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Abstract. SOUFFLÉ is an open source programming framework that performs static program analysis
expressed in Datalog on very large code bases, including points-to analysis on OpenJDK7 (1.4M pro-
gram variables, 350K objects, 160K methods) in under a minute. SOUFFLÉ is being successfully used for
Java security analyses at Oracle Labs due to (1) its high-performance, (2) support for rapid program anal-
ysis development, and (3) customizability. SOUFFLÉ incorporates the highly flexible Datalog-based pro-
gram analysis paradigm while exhibiting performance results that are on-par with manually developed
state-of-the-art tools. In this tool paper, we introduce the SOUFFLÉ architecture, usage and demonstrate
its applicability for large-scale code analysis on the OpenJDK7 library as a use case.

1 Introduction

Among the reasons for the slow industrial adoption of static program analysis is the lack of sufficient cus-
tomizability and scalability in tools. Recently, the use of Datalog-like languages, has had a resurgence in
several computer science communities [9], particularly, in the area of program analysis [3, 2, 16, 4, 12, 18]
where tools such as µZ [10], LogicBlox [11] and bddbddb [18] have shown great promise. In these tools,
Datalog acts as a domain specific language to express custom program analyses concisely, reducing the com-
plexity of developing program analyzers. The drawback of this approach is that program analyses specified
in Datalog typically experience reduced performance compared to manually implemented tools. A notable
reason for this decrease in performance appears to be the “one size fits all” approach of evaluating Datalog
programs, i.e., Datalog engines generally lack the ability to specialize their evaluation process for a given
instance of a program analysis specification.

To close the performance gap, we have developed a tool called SOUFFLÉ that overcomes the performance
limitations of standard Datalog evaluation by performing an efficient synthesis of Datalog specifications to
executable C++ programs. As a result, SOUFFLÉ is able to perform analyses on-par with state-of-the-art
manual tools while retaining the advantages of employing a domain specific language for expressing static
program analyses. For example, [6] reports the ground-breaking capability of obtaining points-to analysis
results for the OpenJDK library in under a minute. With the same dataset, SOUFFLÉ can obtain a simi-
lar performance (35s) using a general purpose analysis infrastructure on a multi-core commodity desktop
system.

In this tool paper, we give an overview of the SOUFFLÉ framework; notably its architecture, optimizations
and expected performance on very large code bases. We conclude with a summary of on-going developments
of the SOUFFLÉ infrastructure.

? Parts of this research was conducted while visiting Oracle Labs, Australia as assistants and visiting professor.
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Fig. 1. Comparison: standard Datalog evaluation versus the architecture of SOUFFLÉ

2 How It Works

A Datalog program [1] consists of an extensional database, which is defined by facts, and an intensional
database, which is defined by rules. In a setup for static program analysis, the extensional database represents
an input program in relational form. The relational representation of an input program is obtained from an
extractor [15] describing the relevant semantics of the input program for a given program analysis. The
intensional database represents the program analysis specification phrased as Horn clause formulae over
finite domains. Fig. 1(a) illustrates the workflow for static program analysis in Datalog. The query result
of the Datalog execution represents the actual result of the program analysis. While standard schemes for
evaluating Datalog are generally optimized for reducing the amount of redundant computation, e.g., the
conventional, interpreter-based semi-naı̈ve evaluation scheme [1] as shown in Fig. 1(b), they lack the ability
to specialize their evaluation for a given program analysis specification instance.

SOUFFLÉ takes a different approach: Instead of evaluating a Datalog program on-the-fly, we treat a
Datalog program as a specification that is synthesized to a C++ program. The C++ program is compiled, and
executed with the extensional database (i.e. facts) as an input. Essentially, the generated executable becomes
an analyzer in its own right. Fig. 1(c) depicts our translation scheme, where the Datalog specification is
first parsed and semantically checked. The input specification is then translated internally to an imperative
Relational Algebra Machine (RAM) program. The RAM program is further translated to a C++ program with
OpenMP annotations for parallel execution and C++ template based meta-programming elements. In the last
stage, an OpenMP/C++ compiler translates the generated code to a highly optimized, parallel program.

2.1 A Hierarchy of Specializations

To achieve a synthesis of Datalog specifications to C++, we follow a staged specialization hierarchy as
depicted in Fig. 2(a). At each stage, a specialization step, as characterized by Futamura projections [8],
is applied. The foundation is provided by an abstract transformation Mix that, given an interpreter Int
and a source program Source, yields a specialized program amalgamating the interpreter and the source
program. The specialized program performs the same computation as the source program (executed by the
interpreter) – yet more efficiently. In Fig. 2(b), the semantic equivalence is shown between evaluation under
an interpreter Int and the program produced by the Mix transformation [8]. What is of particular interest,
is that at each specialization phase, information is revealed that enables opportunities for code optimizations
that were not possible at earlier stages. As a consequence, the binary code produced by our specialization
hierarchy is on-par in terms of run-time and memory usage with state-of-the-art hand crafted code.
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Fig. 2. Specialization Hierarchy and First Futamura Projection of Semi-Naı̈ve Evaluation

The first specialization PRAM=Mix(Intdl,Idb) sees the Semi-Naı̈ve Evaluation [1] as the interpreter,
Intdl. It is specialized with the intensional database, Idb, corresponding to the analysis specification. As
a result, we receive a relational algebra machine program PRAM that expresses the computation of the
specified analysis as a series of fix-point computation steps over relational algebra operations. From a high-
level viewpoint, the specialization of the Semi-Naı̈ve evaluation is a translation of a declarative Datalog
program to an imperative relational algebra program.

The next application of Futamura’s projection is performed on the RAM program, i.e., PC++<>
=

Mix(IntRAM,PRAM), that has been generated by the first stage and the RAM interpreter IntRAM. The
conducted specializations target the efficient structuring of loop-based join operations and the identification
of optimal index support, in order to reduce the worst-case runtime complexity of the RAM program. How-
ever, index management is expensive and a minimal number of indices is desirable. In SOUFFLÉ we employ
a novel, optimal and polynomial-time algorithm that is inspired by Dilworth’s theorem [7] to compute only
necessary indices. The idea of the algorithm is to compute partitions of chains in a lattice of indices. From
each chain, a maximum index is computed that subsumes all other indices in the chain. This optimization
results in a large run-time improvement in the resulting analyzer. After specializing the relational algebra
program, C++ code that makes extensive use of templates is generated.

The final specialization step, PC++=Mix(Int<>,PC++<>
), is performed while compiling the generated

C++ program. This Futamura projection is implemented using template-based meta-programming tech-
niques [17]. With meta-programming techniques, data structures and algorithms are specialized by static
information, thereby hoisting computations from run-time to compile-time. E.g., data structure interfaces
are realized in form of C++ concepts rather than polymorphic C++ base classes to eliminate virtual-call
dispatches and run-time type checks. The generated data structures are highly specialized towards the use
of the corresponding relations in the input program. We employ efficient parallel variations of B-trees and
Tries, with customized data element, node, and iterator types. Additionally, primary and secondary index
support is provided for efficient operations on the represented relation in the program. For example, one of
the most time-consuming operations with the use of indices is the comparison of two tuples. For this pur-
pose we instantiate specialized versions of templatized lexicographical order functions in order to removing
unnecessary control-flow and memory access overhead from the analysis run-time.

Our staged-translation approach using a specialization hierarchy coupled with standard Datalog opti-
mizations and specialized relational data structures allows SOUFFLÉ to analyze very large code bases, previ-
ously considered to be impractical for Datalog-based engines. The generated C++ code is packaged in form
of header files for a smooth integration with host applications.

2.2 An Example of the Specialization Process

Fig. 3 illustrates a simple security analysis for an example assuming that there is a low and high security
state in a program. The invocation of a security sensitive method vulnerable is permitted only in the



void m(int i, int j){
s: while (i < j){

l1: protect();
l2: i++;

}
l3: vulnerable();
}

s `1

`3 `2

// Declarations
E(s:Node,d:Node) input
P(node:Node) input
I(node:Node) output
// Analysis
I("s").
I(y) :- I(x), E(x,y), !P(y).

Fig. 3. Java-like input program, a graphical representation of its control-flow, and security specification in SOUFFLÉ

high-security state. A call to the method protect transfers the security state from low to high if permitted.
The example code of Fig. 3 would not violate the imposed security policy if it can be assumed that i < j
whenever m is invoked. However, since this can not be ensured, m exhibits a security violation which we
would like to detect. The control-flow graph of m is shown next to the code fragment. It has the start nodes
s, and nodes `1,`2, and `3 representing statements in the input program. An edge (x, y) ∈ E between two
nodes represents a potential transfer of control. A statement x ∈ P raises the security level.

A simple analysis verifying the imposed security policy computes all statements that can be reached
without passing the protect function. If a call to vulnerable is included in this set, the security policy
is violated. Such a security analysis is be specified by the SOUFFLÉ code listed next to the control-flow graph
in Fig. 3. The first section of the program declares relations used in the SOUFFLÉ program. The relation E is
defined as a binary relation between two Node elements and the sets P and I contain elements of type Node.
The qualifier input denotes that the relations are an extensional database and are provided as an input when
executing the analysis. The set I contains all nodes in the control-flow that are not secure and is denoted as
a result of the analysis using the qualifier output. In particular, if node `3 which is a vulnerable call
is in set I, the method m does not fulfill the security policy to be enforced and would thus be identified as
insecure.

The analysis always assumes the entry node s to be insecure by adding it to set I via I("s"). The
propagation rule

I(y) :- I(x), E(x,y), !P(y).

adds node y to the set of insecure nodes if (1) node x is insecure, (2) there is a control-flow from x to y, and
(3) the target node y does not raise the security level.

SOUFFLÉ translates the given analysis specification in stages. The specialization hierarchy first fuses the
semi-naı̈ve evaluation with rules from the analysis as shown in Fig. 4: For the recursively defined set I code
computing a fixed-point is generated. The set I is thereby supported by two auxiliary sets I ′ and ∆I. The
set I ′ represents the newly gained knowledge within an iteration of the fix-point computation and set ∆I
represents the newly gained knowledge of the previous iteration. The fix-point computation is performed in
the while loop from line 2 to line 9 of the RAM program listed by Fig. 4(a). The first section of the loop body
(lines 3 - 7) computes I ′ using ∆I as an input. The loop starting in line 4 iterates over all nodes in ∆I and
the nested loop starting in line 5 iterates over all edges in the control flow graph. If any of those edges links
some node x to a previously discovered insecure node y present in ∆I, where x is not a protect call itself
and has not been marked as insecure before, it is add to the newly deduced set of insecure nodes I ′ (lines 6
and 7). In the last two statements of the loop body (i.e. lines 8 and 9) the newly gained knowledge of relation
I ′ is added to relation I and I ′ becomes ∆I. The fixed-point calculation terminates if no new insecure nodes
could be identified.

The pseudo-code of the Futamura projection is not optimal since it might have a worst-case complexity
of O(n · m) where n is the number of nodes in the control-flow graph and m is the number of edges



1 I = {s};∆I = I
2 w h i l e ∆I 6= ∅
3 I ′ = ∅
4 f o r u ∈ ∆I do
5 f o r ( x , y ) ∈ E do
6 i f ( u = x∧ y 6∈ P ∧ y 6∈ I )
7 I ′ = I ′ ∪ {y}

8 I = I ∪ I ′
9 ∆I = I ′

1 I = {s};∆I = I
2 w h i l e ∆I 6= ∅
3 I ′ = ∅
4 f o r u ∈ ∆I do
5 f o r ( , y) ∈ E(u, ) do
6 i f (y 6∈ P ∧ y 6∈ I )
7 I ′ = I ′ ∪ {y}

8 I = I ∪ I ′
9 ∆I = I ′

(a) Futamura Projection (b) Partial Evaluation of RAM Program

Fig. 4. Running Example

in the control-flow graph. To improve the performance of the program, we specialize the loop traversal
of the loop in line 5 by employing an index. The index filters out all pairs in the edge relation whose
source is not node u, i.e., all the edges are selected which emanate of node u denoted by the set E(u, ).
This specialization requires an index on relation E, yet significantly reduces the runtime complexity. Typical
analyses result in potentially hundreds of indices, making index management expensive if performed naively.
We therefore employ an optimal, minimal index selection technique based on Dilworth’s theorem [7] to
select only necessary indices since an index may subsume several indices. Suppose we had another access
to relation E on both u and v attributes, i.e., E(u, v). A naive implementation would be to have two indices
defined by the lexicographical orders u and u < v, however, the minimal solution would be to have only
one index, namely, u < v as it subsumes the index with only u. Some information to our solution to this
combinatorial problem can be found in [13].

To implement indices from the previous step, we employ templatized B-Trees that require a comparison
function for two tuples in the relation. The comparison function is implemented as a lexicographical order
in the form of a template as sketched below,

t e m p l a t e< i n t . . . > s t r u c t Compera tor ;
t e m p l a t e< i n t i , i n t . . . t a i l > s t r u c t Comperator<i , t a i l . . . > {

s t a t i c boo l cmp ( c o n s t t u p l e& a , c o n s t t u p l e& b ){
r e t u r n a [ i ] < b [ i ] | | ( a [ i ] == b [ i ] && Comperator< t a i l . . . > : : cmp ( a , b ) ) ;

}
} ;
t e m p l a t e<> s t r u c t Comperator<> {

s t a t i c boo l cmp ( c o n s t t u p l e &, c o n s t t u p l e &){ r e t u r n t r u e ; }
} ;

The variadic template for the struct Comperator is parametrized by the columns in order.
E.g., the call Comperator<2,0>::cmp(a,b) compares the tuples a and b by checking whether the
third element of a is less than the third element of b. If the comparison results in a tie, the first elements
of both tuples are compared to determine the order between the two tuples a and b. The operator is de-
fined recursively: the base case is given by the struct Comperator<> considering every tuple equal,
and the inductive case by struct Comperator<i,tail...>, comparing the i-th components and,
if equal, delegating the comparison to Comperator<tail...>. The expansion of the template for a
given instance such as Comperator<2,0> is performed at compile-time and delivers, in combination
with function inlining, significant performance gains for index construction and retrieval. Without applying
meta-programming techniques that rely on program specializations, i.e., pushing computations from runtime
to compile-time, these performance gains would not be achievable.



CI CS Security
Tool ∆t [hh:mm::ss] Memory [GB] ∆t [hh:mm::ss] Memory [GB] ∆t [hh:mm::ss] Memory [GB]

bddbddb 0:30:00 5.7 DNF DNF DNF DNF
SQLite 6:20:00 40.2 DNF DNF DNF DNF
µZ DNF DNF DNF DNF DNF DNF

SOUFFLÉ 0:00:35 8.5 6:44:08 206.4 14:45:01 75.3
Table 1. Comparison of Datalog evaluation tools for analyses on the OpenJDK7 b147 library, executing on an 8 core
Intel Xeon E5-2690 v2 @ 3.0GHz server system. DNF = Did Not Finish within 18h.

3 Case Study: OpenJDK7

In this section we present our experience using SOUFFLÉ as a Java security analysis tool on the Java Devel-
opment Kit (JDK). We point the reader to [5] for information on the Java vulnerabilities work at Oracle. For
more detailed performance data on the techniques used in SOUFFLÉ , we refer the reader to [13].

In Table 1 we present three types of analyses performed on the OpenJDK7-b147. Due to the sheer size
of OpenJDK7 (1.4M variables, 350K heap objects, 160K methods, 590K invocations and 17K types) such
analyses are typically regarded as either impractical for most tools or at the very least, extremely challenging.
The CI column refers to a context-insensitive points-to analysis and the CS refers to a context-sensitive
points-to analysis. Points-to analysis is the main building block of most security analyses performed and
are typically dominating the overall execution time. The last column, Security, refers to a large, composite
security analysis similar to the caller sensitive method analysis in [5].

For our evaluation, we compare the performance of bddbddb [18], Z3’s Datalog extension µZ [10], an
SQLite based Datalog engine [14], and a 8-core parallel version of SOUFFLÉ . Each analysis has been ported
to the respective Datalog variation of the evaluated tools. The resulting specifications typically comprise a
few thousand lines of code. For the SOUFFLÉ based specifications, SOUFFLÉ ’s module system has been
utilized to facilitate the reuse of code among the three analysis, reducing the necessary development effort.

Our experiments reveal the limited capability of pre-existing Datalog-based tools when analyzing very
large code bases. The CI analysis represents a very simple points-to analysis that does not construct the
call-graph on the fly. A hand-crafted version of this analysis is reported to run under a minute [6]. For the
CI analysis, bddbddb performs the analysis in a reasonable amount of time. However SOUFFLÉ outperforms
bddbddb in terms of run-time by more than 50× consuming a comparable amount of memory. In the case of
the CS and Security analyses, SOUFFLÉ is the only tool capable of performing the analyses within the 18h
time limit imposed by the computation resources available to us for our evaluations. The Z3 based versions
did not manage to finish any of our evaluated analyses in time.

4 Conclusion and Current Developments

We have presented SOUFFLÉ, a Datalog-based analysis tool that instead of evaluating Datalog, performs
several specialization and optimization steps to produce a compiled, binary analyzer that can handle very
large code bases. SOUFFLÉ is publicly available4 and is actively developed by both Oracle and several
universities. SOUFFLÉ supports a range of Datalog language extensions to aid in the specification of program
analyses and resulting analyzers may be directly included into host applications as a header-only library.

4 http://souffle-lang.github.io
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