
Hardware Transactional
Memory
...and its relation to Soufflé

Jonathan Chung

March 23, 2018

Overview

I Locks
I Identify critical sections of code
I Only one thread can execute code within it at a time

I Transactional Memory
I Sections of code are treated as transactions - similar to a database
I Optimistic - Resources are not immediately locked; compare the start and end states

of the resource and commit updates/rollback accordingly
I Monitor some form of transaction variables to see if they have been modified
I Serialisable - the result of running something concurrently is the same as running

them separate from each other
I Atomic - either everything that is changed is commited, or nothing is
I What do I want to execute atomically vs. how should I make it execute atomically
I Can be done in software, but incurs significant overheads

University of Sydney 2

Overview

I Locks
I Identify critical sections of code
I Only one thread can execute code within it at a time

I Transactional Memory
I Sections of code are treated as transactions - similar to a database
I Optimistic - Resources are not immediately locked; compare the start and end states

of the resource and commit updates/rollback accordingly
I Monitor some form of transaction variables to see if they have been modified
I Serialisable - the result of running something concurrently is the same as running

them separate from each other
I Atomic - either everything that is changed is commited, or nothing is
I What do I want to execute atomically vs. how should I make it execute atomically
I Can be done in software, but incurs significant overheads

University of Sydney 2

Hardware Transactional Memory (HTM)

I Similar to transactional memory

I ...but with hardware
I Requires modifications to hardware to support transactions - processors, cache,

bus protocol
I Simple semantics - designate transactional area
I Intended to avoid common problems with locking (deadlocks, race conditions,

etc.)
I Has yielded considerable performance improvements in certain previous

applications

University of Sydney 3

Hardware Transactional Memory (HTM)

I Similar to transactional memory
I ...but with hardware

I Requires modifications to hardware to support transactions - processors, cache,
bus protocol

I Simple semantics - designate transactional area
I Intended to avoid common problems with locking (deadlocks, race conditions,

etc.)
I Has yielded considerable performance improvements in certain previous

applications

University of Sydney 3

Hardware Transactional Memory (HTM)

I Similar to transactional memory
I ...but with hardware
I Requires modifications to hardware to support transactions - processors, cache,

bus protocol
I Simple semantics - designate transactional area
I Intended to avoid common problems with locking (deadlocks, race conditions,

etc.)
I Has yielded considerable performance improvements in certain previous

applications

University of Sydney 3

TSX Implementations
I Transactional Synchronisation Extensions (TSX)

I Documented by Intel in 2012
I First released on the Haswell microarchitecture in 2013

I Two interfaces:
I Hardware Lock Elision (HLE)

I Can be used on TSX-incompatible hardware - its prefixes uses same byte encoding as
existing prefixes for string-manipulation instructions

I A write lock is not acquired at the start of the transaction (it is elided)
I Write addresses are tracked, so if they is modified externally the transaction aborts
I On an abort, the transaction restarts and acquires the lock

I Restricted Transactional Memory (RTM)
I Requires TSX-compatible hardware
I Allows greater flexibility to specify abort conditions, use or omit locks
I Fallback path is required in case of transaction failure, which is also

programmer-defined

University of Sydney 4

TSX Implementations
I Transactional Synchronisation Extensions (TSX)

I Documented by Intel in 2012
I First released on the Haswell microarchitecture in 2013

I Two interfaces:
I Hardware Lock Elision (HLE)

I Can be used on TSX-incompatible hardware - its prefixes uses same byte encoding as
existing prefixes for string-manipulation instructions

I A write lock is not acquired at the start of the transaction (it is elided)
I Write addresses are tracked, so if they is modified externally the transaction aborts
I On an abort, the transaction restarts and acquires the lock

I Restricted Transactional Memory (RTM)
I Requires TSX-compatible hardware
I Allows greater flexibility to specify abort conditions, use or omit locks
I Fallback path is required in case of transaction failure, which is also

programmer-defined

University of Sydney 4

TSX Implementations
I Transactional Synchronisation Extensions (TSX)

I Documented by Intel in 2012
I First released on the Haswell microarchitecture in 2013

I Two interfaces:
I Hardware Lock Elision (HLE)

I Can be used on TSX-incompatible hardware - its prefixes uses same byte encoding as
existing prefixes for string-manipulation instructions

I A write lock is not acquired at the start of the transaction (it is elided)
I Write addresses are tracked, so if they is modified externally the transaction aborts
I On an abort, the transaction restarts and acquires the lock

I Restricted Transactional Memory (RTM)
I Requires TSX-compatible hardware
I Allows greater flexibility to specify abort conditions, use or omit locks
I Fallback path is required in case of transaction failure, which is also

programmer-defined

University of Sydney 4

RTM Instructions

I xbegin - starts transactional execution for processor; returns value corresponding
to success or status of abort (e.g. conflict, capacity)

I Specifies fallback path in event of transactional failure
I The abort status of xbegin is stored in the EAX register

I xend - specifies end of transactional code region, initiates commit
I xabort - forces transaction to abort explicitly
I xtest - check if processor is currently executing in a transactional region

University of Sydney 5

Caches

I Cache lines - Transfers data between memory and cache in fixed size blocks
I Associativity - The number of places in the cache that can be mapped to memory

I The processor tracks its sequence of accesses, known as read and write sets,
which are stored in some hardware cache

I Which cache the sets are stored may differ between processors
I In Skylake processors, read sets are tracked in the L3 cache (65536 cache lines, with

associativity 16)
I Write sets are brought to the L1 cache (512 cache lines, with associativity 8)

I The further away the cache, the less performant it is
I If one thread’s cache line in the read or write set is modified by another thread,

the transaction aborts
I If a new access cannot be recorded in the read or write set, the transaction aborts

University of Sydney 6

Caches

I Cache lines - Transfers data between memory and cache in fixed size blocks
I Associativity - The number of places in the cache that can be mapped to memory
I The processor tracks its sequence of accesses, known as read and write sets,

which are stored in some hardware cache
I Which cache the sets are stored may differ between processors

I In Skylake processors, read sets are tracked in the L3 cache (65536 cache lines, with
associativity 16)

I Write sets are brought to the L1 cache (512 cache lines, with associativity 8)
I The further away the cache, the less performant it is

I If one thread’s cache line in the read or write set is modified by another thread,
the transaction aborts

I If a new access cannot be recorded in the read or write set, the transaction aborts

University of Sydney 6

Caches

I Cache lines - Transfers data between memory and cache in fixed size blocks
I Associativity - The number of places in the cache that can be mapped to memory
I The processor tracks its sequence of accesses, known as read and write sets,

which are stored in some hardware cache
I Which cache the sets are stored may differ between processors

I In Skylake processors, read sets are tracked in the L3 cache (65536 cache lines, with
associativity 16)

I Write sets are brought to the L1 cache (512 cache lines, with associativity 8)
I The further away the cache, the less performant it is
I If one thread’s cache line in the read or write set is modified by another thread,

the transaction aborts
I If a new access cannot be recorded in the read or write set, the transaction aborts

University of Sydney 6

Causes of Aborted Transactions

I Conflicts - a thread’s cache line is modified by another thread during a
transaction

I Capacity - the internal buffer overflowed (hardware/resource constraints)
I Explicit - a forced abort, caused by calling _xabort()

I Other causes include:
I Ring transitions - functions that require changing levels of privilege
I Using unsupported functions: strcmp, strcpy, new, delete
I Interrupts
I x86 instructions - PAUSE, CPUID instructions (returning processor information)

I Usually, retry the transaction if allowed to
I If capacity reached or out of retries, revert to a fallback software lock

University of Sydney 7

Causes of Aborted Transactions

I Conflicts - a thread’s cache line is modified by another thread during a
transaction

I Capacity - the internal buffer overflowed (hardware/resource constraints)
I Explicit - a forced abort, caused by calling _xabort()
I Other causes include:

I Ring transitions - functions that require changing levels of privilege
I Using unsupported functions: strcmp, strcpy, new, delete
I Interrupts
I x86 instructions - PAUSE, CPUID instructions (returning processor information)

I Usually, retry the transaction if allowed to
I If capacity reached or out of retries, revert to a fallback software lock

University of Sydney 7

Causes of Aborted Transactions

I Conflicts - a thread’s cache line is modified by another thread during a
transaction

I Capacity - the internal buffer overflowed (hardware/resource constraints)
I Explicit - a forced abort, caused by calling _xabort()
I Other causes include:

I Ring transitions - functions that require changing levels of privilege
I Using unsupported functions: strcmp, strcpy, new, delete
I Interrupts
I x86 instructions - PAUSE, CPUID instructions (returning processor information)

I Usually, retry the transaction if allowed to
I If capacity reached or out of retries, revert to a fallback software lock

University of Sydney 7

B-Trees

I Used to store relations
I Allows a certain range of keys per node
I Self-balancing during inserts and removals
I Optimised for reading and writing large amounts of data - O(logn)
I Soufflè implementation differs slightly:

I Hints
I Read/write locks
I No key removal

University of Sydney 8

Old Code - ”BTree.h”
while (root == nullptr) {

if (! root_lock . try_start_write ()) {
continue ;

}
if (root != nullptr) {

root_lock . end_write ();
break;

}
leftmost = new leaf_node ();
leftmost -> numElements = 1;
leftmost ->keys [0] = k;
root = leftmost ;
root_lock . end_write ();
hints. last_insert = leftmost ;
return true;

}

University of Sydney 9

New Code - ”htmx86.h”
define IS_LOCKED (lock) \

(__atomic_load_n ((long int *)& fallback_lock ,
__ATOMIC_SEQ_CST) != fallback_unlocked_value)

define TX_RETRIES (num) int retries = num;
define TX_START (type) \

while (1) { \
while (IS_LOCKED (fallback_lock)) \

; \
unsigned status = _xbegin (); \
if (status == _XBEGIN_STARTED) { \

if (IS_LOCKED (fallback_lock)) _xabort (1); \
break; \

} else { \
if (!(status & _XABORT_RETRY)) \

retries = 0; \

University of Sydney 10

New Code - ”htmx86.h”
else \

retries --; \
} \
if (retries <= 0) { \

fallback_lock .lock (); \
break; \

} \
}

define TX_END \
if (retries > 0) { \

_xend (); \
} else { \

fallback_lock . unlock (); \
}

Thanks to Vincent Gramoli for providing an RTM template
University of Sydney 11

New Code - ”BTree.h”
TX_RETRIES (maxRetries ());
if (isTransactionProfilingEnabled ()) {

TX_START_INST (NL , (& tdata));
} else {

TX_START (NL);
}
if (empty ()) {

leftmost = new leaf_node ();
leftmost -> numElements = 1;
leftmost ->keys [0] = k;
root = leftmost ;
hints. last_insert = leftmost ;
TSX_END ;
return true;

}

University of Sydney 12

The DOOP Experiment

I ”A collection of various analyses expressed as Datalog rules”
I Object-sensitive analyses with varying degrees of complexity

I 1-object-sensitive+heap, 2-object-sensitive+2-heap, 3-object-sensitive+3-heap
(1o1h, 2o2h, 3o3h respectively)

I A flavour of context sensitivity, which qualifies variables and abstract objects with
context information

I Object-sensitive analysis has a calling context for object abstractions (i.e. allocation
sites), plus a heap context for heap abstractions

I 2o2h, 3o3h have calling and heap contexts of two and three allocation sites
I DaCapo 2006 benchmarks: antlr, bloat, chart, eclipse...

I (These are existing tools written in Java)
I Measure runtime and memory footprint

University of Sydney 13

The DOOP Experiment

I ”A collection of various analyses expressed as Datalog rules”
I Object-sensitive analyses with varying degrees of complexity

I 1-object-sensitive+heap, 2-object-sensitive+2-heap, 3-object-sensitive+3-heap
(1o1h, 2o2h, 3o3h respectively)

I A flavour of context sensitivity, which qualifies variables and abstract objects with
context information

I Object-sensitive analysis has a calling context for object abstractions (i.e. allocation
sites), plus a heap context for heap abstractions

I 2o2h, 3o3h have calling and heap contexts of two and three allocation sites

I DaCapo 2006 benchmarks: antlr, bloat, chart, eclipse...
I (These are existing tools written in Java)

I Measure runtime and memory footprint

University of Sydney 13

The DOOP Experiment

I ”A collection of various analyses expressed as Datalog rules”
I Object-sensitive analyses with varying degrees of complexity

I 1-object-sensitive+heap, 2-object-sensitive+2-heap, 3-object-sensitive+3-heap
(1o1h, 2o2h, 3o3h respectively)

I A flavour of context sensitivity, which qualifies variables and abstract objects with
context information

I Object-sensitive analysis has a calling context for object abstractions (i.e. allocation
sites), plus a heap context for heap abstractions

I 2o2h, 3o3h have calling and heap contexts of two and three allocation sites
I DaCapo 2006 benchmarks: antlr, bloat, chart, eclipse...

I (These are existing tools written in Java)
I Measure runtime and memory footprint

University of Sydney 13

The DOOP Experiment

I ”A collection of various analyses expressed as Datalog rules”
I Object-sensitive analyses with varying degrees of complexity

I 1-object-sensitive+heap, 2-object-sensitive+2-heap, 3-object-sensitive+3-heap
(1o1h, 2o2h, 3o3h respectively)

I A flavour of context sensitivity, which qualifies variables and abstract objects with
context information

I Object-sensitive analysis has a calling context for object abstractions (i.e. allocation
sites), plus a heap context for heap abstractions

I 2o2h, 3o3h have calling and heap contexts of two and three allocation sites
I DaCapo 2006 benchmarks: antlr, bloat, chart, eclipse...

I (These are existing tools written in Java)

I Measure runtime and memory footprint

University of Sydney 13

The DOOP Experiment

I ”A collection of various analyses expressed as Datalog rules”
I Object-sensitive analyses with varying degrees of complexity

I 1-object-sensitive+heap, 2-object-sensitive+2-heap, 3-object-sensitive+3-heap
(1o1h, 2o2h, 3o3h respectively)

I A flavour of context sensitivity, which qualifies variables and abstract objects with
context information

I Object-sensitive analysis has a calling context for object abstractions (i.e. allocation
sites), plus a heap context for heap abstractions

I 2o2h, 3o3h have calling and heap contexts of two and three allocation sites
I DaCapo 2006 benchmarks: antlr, bloat, chart, eclipse...

I (These are existing tools written in Java)
I Measure runtime and memory footprint

University of Sydney 13

Data Structures

I B-Tree (original): our original, existing, lovingly-optimised implementation
I B-Tree (HTM): our new implementation using HTM for insertion (particularly,

Restricted Transactional Memory)
I B-Tree (Google): a Google implementation of B-Trees, from which the current

original implementation was derived

I Unordered Hashset: a hash-based data structure using STL’s unordered sets
promising fast lookups; must recursively hash each relation/tuple

I Ordered Hashset (RBT-set): similar, but using STL’s ordered sets; now based on
red-black trees

University of Sydney 14

Data Structures

I B-Tree (original): our original, existing, lovingly-optimised implementation
I B-Tree (HTM): our new implementation using HTM for insertion (particularly,

Restricted Transactional Memory)
I B-Tree (Google): a Google implementation of B-Trees, from which the current

original implementation was derived
I Unordered Hashset: a hash-based data structure using STL’s unordered sets

promising fast lookups; must recursively hash each relation/tuple
I Ordered Hashset (RBT-set): similar, but using STL’s ordered sets; now based on

red-black trees

University of Sydney 14

Runtime

2 4 6 8 10 12 14 16

50

100

150

threads

ru
nt

im
e

(s
)

1o1h-antlr

btree (original)
btree (htm)
btree (google)
hashset
rbt-set

University of Sydney 15

Runtime

2 4 6 8 10 12 14 16

100

200

300

400

500

threads

ru
nt

im
e

(s
)

2o2h-antlr

btree (original)
btree (htm)
btree (google)
hashset
rbt-set

University of Sydney 16

Runtime

2 4 6 8 10 12 14 16

500

1,000

1,500

2,000

threads

ru
nt

im
e

(s
)

3o3h-antlr

btree (original)
btree (htm)
btree (google)
hashset
rbt-set

University of Sydney 17

Memory

2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

·106

threads

m
em

or
y

(k
b)

1o1h-antlr

btree (original)
btree (htm)
btree (google)
hashset
rbt-set

University of Sydney 18

Memory

2 4 6 8 10 12 14 16

2

3

4

5

6

·106

threads

m
em

or
y

(k
b)

2o2h-antlr

btree (original)
btree (htm)
btree (google)
hashset
rbt-set

University of Sydney 19

Memory

2 4 6 8 10 12 14 16

0.5

1

1.5

2

2.5

·107

threads

m
em

or
y

(k
b)

3o3h-antlr

btree (original)
btree (htm)
btree (google)
hashset
rbt-set

University of Sydney 20

What happened?
I Worse runtime than original B-Trees, though still considerably better than

Google’s implementation (and a lot better than hash-based data structures)
I Marginally better memory footprint than original B-Trees
I Doesn’t scale as well with threads - reaches its peak at 4/8 cores

I Why is HTM slower?

I One thread:
I 4268538 transactions
I 105967 total aborts
I 4772 aborts due to conflicts
I 1472 aborts due to capacity
I 99723 ’other’ aborts
I 101671 software fallbacks

I Two threads:
I 7305118 transactions
I 3723216 aborts
I 3477314 aborts due to conflicts
I 2251 aborts due to capacity
I 243651 ’other’ aborts
I 247557 software fallbacks

I Coarse granularity, large transaction size

University of Sydney 21

What happened?
I Worse runtime than original B-Trees, though still considerably better than

Google’s implementation (and a lot better than hash-based data structures)
I Marginally better memory footprint than original B-Trees
I Doesn’t scale as well with threads - reaches its peak at 4/8 cores
I Why is HTM slower?

I One thread:
I 4268538 transactions
I 105967 total aborts
I 4772 aborts due to conflicts
I 1472 aborts due to capacity
I 99723 ’other’ aborts
I 101671 software fallbacks

I Two threads:
I 7305118 transactions
I 3723216 aborts
I 3477314 aborts due to conflicts
I 2251 aborts due to capacity
I 243651 ’other’ aborts
I 247557 software fallbacks

I Coarse granularity, large transaction size

University of Sydney 21

What happened?
I Worse runtime than original B-Trees, though still considerably better than

Google’s implementation (and a lot better than hash-based data structures)
I Marginally better memory footprint than original B-Trees
I Doesn’t scale as well with threads - reaches its peak at 4/8 cores
I Why is HTM slower?

I One thread:
I 4268538 transactions
I 105967 total aborts
I 4772 aborts due to conflicts
I 1472 aborts due to capacity
I 99723 ’other’ aborts
I 101671 software fallbacks

I Two threads:
I 7305118 transactions
I 3723216 aborts
I 3477314 aborts due to conflicts
I 2251 aborts due to capacity
I 243651 ’other’ aborts
I 247557 software fallbacks

I Coarse granularity, large transaction size

University of Sydney 21

What happened?
I Worse runtime than original B-Trees, though still considerably better than

Google’s implementation (and a lot better than hash-based data structures)
I Marginally better memory footprint than original B-Trees
I Doesn’t scale as well with threads - reaches its peak at 4/8 cores
I Why is HTM slower?

I One thread:
I 4268538 transactions
I 105967 total aborts
I 4772 aborts due to conflicts
I 1472 aborts due to capacity
I 99723 ’other’ aborts
I 101671 software fallbacks

I Two threads:
I 7305118 transactions
I 3723216 aborts
I 3477314 aborts due to conflicts
I 2251 aborts due to capacity
I 243651 ’other’ aborts
I 247557 software fallbacks

I Coarse granularity, large transaction size
University of Sydney 21

What now?

I Finer granularity of transactions for HTM in the insert operation - potentially
reducing conflicts?

I Could HTM be used elsewhere in the B-Tree/Soufflé to greater success?
I Switching out Soufflé’s custom read/write locks for C++’s new standard

implementations (e.g. shared_mutex)?
I Which is the greater bottleneck: lookups or insertion?

University of Sydney 22

	What is HTM?
	Overview
	Variants of HTM
	How HTM Works

	Incorporation into Souffle
	B-Trees
	Code

	DOOP Experiment
	The DOOP Experiment
	Results
	Discussion
	Future Work

