
Large-Scale Debugging for
Datalog

David Zhao, Pavle Subotic, Bernhard
Scholz



Introduction

University of Sydney 2



Introduction

I Logic programming (e.g. Datalog) is popular [Aref et al., 2015]
I Static program analysis
I Declarative networking
I Security analysis

I Evaluate at large scale, e.g. hundreds of millions of tuples

I Current debugging approaches do not scale well

We present a new approach to debugging that scales to super large sizes

University of Sydney 3



Datalog

Declarative programming language - logical rules define computation

Example

path(x, y) :- edge(x, y).

path(x, z) :- edge(x, y), path(y, z).

Example Input

edge(1, 2), edge(2, 2), edge(2, 3)

Example Output

path(1, 2), path(2, 2), path(2, 3), path(1, 3)

University of Sydney 4



Debugging in Datalog

Debugging Example

Program produces unexpected output path(1, 4)

Where does output come from?

I Debugging in Datalog is difficult
I Imperative language debugging:

I Inspect values of variables at certain points in program

I In Datalog, we only get the output
I No notion of variables
I No notion of time

University of Sydney 5



Provenance as a Debugging Tool

The answer is provenance!

Data Provenance

A way to explain the origins and derivations of data

I Previous approaches for provenance are expensive
[Deutch et al., 2015, Köhler et al., 2012]

How do we compute provenance efficiently?

University of Sydney 6



Provenance Computation

University of Sydney 7



Proof Trees
A form of provenance - a complete explanation for a tuple

Definition (Proof Trees)

A proof tree for a tuple describes how that tuple is derived
The root is the tuple itself, tree explains which rules are applied and which tuples are
used

Proof trees for path(1, 3)

edge(1, 2)

edge(2, 3)
(r1)

path(2, 3)
(r2)

path(1, 3)
edge(1, 2)

edge(2, 2)

edge(2, 3)
(r1)

path(2, 3)
(r2)

path(2, 3)
(r2)

path(1, 3)

University of Sydney 8



Fundamental Question

How do we compute a proof tree?
Apply one step of computation repeatedly

One step of computation

I Given a concrete tuple R(a) and rule R(X) :− R1(X1), . . . Rk(Xk)

I Want subproof for R(a) - tuples for each atom Ri(Xi) which generate R(a)

If we can do one step of computation, we can apply it recursively to get the full proof
tree

University of Sydney 9



Näıve Encoding

Directly store the subproof and rule for each tuple

Path program

path(x, y) :- edge(x, y).

path(x, z) :- edge(x, y), path(y, z).

Path Subproof Rule

(1, 2) edge(1, 2) r1
(2, 3) edge(2, 3) r1
(1, 3) edge(1, 2), path(2, 3) r2

University of Sydney 10



Näıve Encoding

Directly store the subproof and rule for each tuple

I Can directly query for a subproof

I Storing full provenance is expensive

University of Sydney 10



Guided SLD

What information do we actually need for a subproof?

I Tuples matching the body of a rule

I Form the next level up in a proof tree

So, we need

I The rule generating the tuple

I Its level in the proof tree

University of Sydney 11



Guided SLD

What information do we actually need for a subproof?

I Tuples matching the body of a rule

I Form the next level up in a proof tree

So, we need

I The rule generating the tuple

I Its level in the proof tree

University of Sydney 11



Guided SLD
A better method - generate annotations for each tuple

I Rule which generated tuple
I Level in proof tree for tuple

Path program

path(x, y) :- edge(x, y).

path(x, z) :- edge(x, y), path(y, z).

Path Rule Level

(1, 2) r1 1
(2, 3) r1 1
(1, 3) r2 2

Finding a subproof

Search for tuples matching the rule with lower level number

University of Sydney 11



Guided SLD

Advantages:

I Only store 2 extra numbers per tuple

I Finds minimum height proof tree - optimality

University of Sydney 11



Guided SLD

Input
Provenance-
augmented
evaluation

Output

Annotations

Provenance
Query Interface

Query

Proof
Tree

Figure: Diagram of guided SLD provenance system

University of Sydney 11



Implementation in Soufflé

University of Sydney 12



Soufflé

I Soufflé [Jordan et al., 2016] is a high-performance, compilation based Datalog
engine - used in large-scale real-world applications

Implementation

I Datalog-to-Datalog transformation
I Guided SLD

I Soufflé evaluation modification - standard set enforcement fails with annotations
I Modified existing Soufflé machinery for subproof search

University of Sydney 13



Provenance Query System

On-demand query interface

Figure: Provenance Query Interface

University of Sydney 14



Experiments and Results

University of Sydney 15



Overhead vs Normal Soufflé on Doop

Industry standard Doop DaCapo benchmarks
I Points-to analysis framework for Java
I Hundreds of millions of output tuples

0 100 200 300 400
0

0.5

1

1.5

2

2.5

Time of standard Datalog (seconds)

R
u

n
ti

m
e

ov
er

h
ea

d
(×

)

Figure: Runtime overhead of guided SLD

500 1,000 1,500 2,000
0

0.5

1

1.5

2

2.5

Memory usage for standard Datalog evaluation (MB)

M
em

or
y

ov
er

h
ea

d
(×

)

Figure: Memory usage overhead of guided SLD

University of Sydney 16



Overhead vs Normal Soufflé on Doop

Industry standard Doop DaCapo benchmarks
I Points-to analysis framework for Java
I Hundreds of millions of output tuples

0 100 200 300 400
0

0.5

1

1.5

2

2.5

Time of standard Datalog (seconds)

R
u

n
ti

m
e

ov
er

h
ea

d
(×

)

Figure: Runtime overhead of guided SLD

500 1,000 1,500 2,000
0

0.5

1

1.5

2

2.5

Memory usage for standard Datalog evaluation (MB)

M
em

or
y

ov
er

h
ea

d
(×

)

Figure: Memory usage overhead of guided SLD

University of Sydney 16



Comparisons

Compared to state-of-the-art method (top-k [Deutch et al., 2015])
I Instrument Datalog for single query, and run on Soufflé

tc sg
0

20

40

60

80

100

120

3.6 1.3
6.6

1.6

980 239

8.7
3.1

T
im

e
(s

ec
on

d
s)

no prov guided SLD näıve enc top-k

Figure: Results of Datalog evaluation time

tc sg
0

200

400

600

800

1,000

51 30
67 37

966

238

67 57

M
em

or
y

(M
B

)

no prov guided SLD näıve enc top-k

Figure: Results of Datalog evaluation memory
usage

University of Sydney 17



Comparisons

Compared to state-of-the-art method (top-k [Deutch et al., 2015])
I Instrument Datalog for single query, and run on Soufflé

tc sg
0

20

40

60

80

100

120

3.6 1.3
6.6

1.6

980 239

8.7
3.1

T
im

e
(s

ec
on

d
s)

no prov guided SLD näıve enc top-k

Figure: Results of Datalog evaluation time

tc sg
0

200

400

600

800

1,000

51 30
67 37

966

238

67 57

M
em

or
y

(M
B

)

no prov guided SLD näıve enc top-k

Figure: Results of Datalog evaluation memory
usage

University of Sydney 17



Proof Construction Time

0 50 100 150 200 250 300
0

2

4

6

·105

Proof tree height

N
u

m
b

er
of

tr
ee

s

Figure: Distribution of proof tree heights for
DaCapo

0 0.5 1 1.5 2 2.5 3

·105

0

100

200

300

400

Number of nodes

T
im

e
(s

ec
on

d
s)

Figure: Proof tree construction time vs. size

University of Sydney 18



Conclusion

University of Sydney 19



Conclusion

I Debugging in Datalog is difficult

I Developed a solution to efficiently generate provenance information

I Demonstrated viability with large-scale real world data

Future Work

I Optimise Soufflé for guided SLD

I Provenance for negated Datalog

University of Sydney 20



The End

References

Abiteboul, S., Hull, R., and Vianu, V. (1995).
Foundations of Databases.
Addison-Wesley Publishing Company.

Aref, M., ten Cate, B., Green, T. J., Kimelfeld,
B., Olteanu, D., Pasalic, E., Veldhuizen, T. L.,
and Washburn, G. (2015).
Design and Implementation of the LogicBlox
System, pages 1371–1382.
SIGMOD ’15. ACM, New York, NY, USA.

Deutch, D., Gilad, A., and Moskovitch, Y.
(2015).

Selective provenance for datalog programs using
top-k queries.
Proceedings of the VLDB Endowment,
8:1394–1405.

Jordan, H., Scholz, B., and Subotic, P. (2016).
Soufflé: On synthesis of program analyzers.
Proceedings of Computer Aided Verification,
28:422–430.

Köhler, S., Ludäscher, B., and Smaragdakis, Y.
(2012).
Declarative datalog debugging for mere mortals.
Lecture Notes in Computer Science,
7494:111–122.

University of Sydney 21


	Introduction
	Provenance Computation
	Proof Trees
	Naïve Encoding
	Guided SLD

	Implementation in Soufflé
	Experiments and Results
	Conclusion

