
Large-Scale Debugging for
Datalog

David Zhao, Pavle Subotic, Bernhard
Scholz



Introduction

University of Sydney 2



Introduction

I Logic programming (e.g. Datalog) is popular [Aref et al., 2015]
I Static program analysis
I Declarative networking
I Security analysis

I Evaluate at large scale, e.g. hundreds of millions of tuples

I Current debugging approaches do not scale well

We present a new approach to debugging that scales to super large sizes
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Datalog

Declarative programming language - logical rules define computation

Example

path(x, y) :- edge(x, y).

path(x, z) :- edge(x, y), path(y, z).

Example Input

edge(1, 2), edge(2, 2), edge(2, 3)

Example Output

path(1, 2), path(2, 2), path(2, 3), path(1, 3)
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Debugging in Datalog

Debugging Example

Program produces unexpected output path(1, 4)

Where does output come from?

I Debugging in Datalog is difficult
I Imperative language debugging:

I Inspect values of variables at certain points in program

I In Datalog, we only get the output
I No notion of variables
I No notion of time
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Provenance as a Debugging Tool

The answer is provenance!

Data Provenance

A way to explain the origins and derivations of data

I Previous approaches for provenance are expensive
[Deutch et al., 2015, Köhler et al., 2012]

How do we compute provenance efficiently?
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Provenance Computation
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Proof Trees
A form of provenance - a complete explanation for a tuple

Definition (Proof Trees)

A proof tree for a tuple describes how that tuple is derived
The root is the tuple itself, tree explains which rules are applied and which tuples are
used

Proof trees for path(1, 3)
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Fundamental Question

How do we compute a proof tree?
Apply one step of computation repeatedly

One step of computation

I Given a concrete tuple R(a) and rule R(X) :− R1(X1), . . . Rk(Xk)

I Want subproof for R(a) - tuples for each atom Ri(Xi) which generate R(a)

If we can do one step of computation, we can apply it recursively to get the full proof
tree
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Näıve Encoding

Directly store the subproof and rule for each tuple

Path program

path(x, y) :- edge(x, y).

path(x, z) :- edge(x, y), path(y, z).

Path Subproof Rule

(1, 2) edge(1, 2) r1
(2, 3) edge(2, 3) r1
(1, 3) edge(1, 2), path(2, 3) r2
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Näıve Encoding

Directly store the subproof and rule for each tuple

I Can directly query for a subproof

I Storing full provenance is expensive
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Guided SLD

What information do we actually need for a subproof?

I Tuples matching the body of a rule

I Form the next level up in a proof tree

So, we need

I The rule generating the tuple

I Its level in the proof tree
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Guided SLD
A better method - generate annotations for each tuple

I Rule which generated tuple
I Level in proof tree for tuple

Path program

path(x, y) :- edge(x, y).

path(x, z) :- edge(x, y), path(y, z).

Path Rule Level

(1, 2) r1 1
(2, 3) r1 1
(1, 3) r2 2

Finding a subproof

Search for tuples matching the rule with lower level number
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Guided SLD

Advantages:

I Only store 2 extra numbers per tuple

I Finds minimum height proof tree - optimality
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Guided SLD

Input
Provenance-
augmented
evaluation

Output

Annotations

Provenance
Query Interface

Query

Proof
Tree

Figure: Diagram of guided SLD provenance system
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Implementation in Soufflé
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Soufflé

I Soufflé [Jordan et al., 2016] is a high-performance, compilation based Datalog
engine - used in large-scale real-world applications

Implementation

I Datalog-to-Datalog transformation
I Guided SLD

I Soufflé evaluation modification - standard set enforcement fails with annotations
I Modified existing Soufflé machinery for subproof search
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Provenance Query System

On-demand query interface

Figure: Provenance Query Interface
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Experiments and Results
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Overhead vs Normal Soufflé on Doop

Industry standard Doop DaCapo benchmarks
I Points-to analysis framework for Java
I Hundreds of millions of output tuples
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Figure: Runtime overhead of guided SLD
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Figure: Memory usage overhead of guided SLD
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Comparisons

Compared to state-of-the-art method (top-k [Deutch et al., 2015])
I Instrument Datalog for single query, and run on Soufflé
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Figure: Results of Datalog evaluation time
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Proof Construction Time
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Figure: Distribution of proof tree heights for
DaCapo
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Figure: Proof tree construction time vs. size
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Conclusion
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Conclusion

I Debugging in Datalog is difficult

I Developed a solution to efficiently generate provenance information

I Demonstrated viability with large-scale real world data

Future Work

I Optimise Soufflé for guided SLD

I Provenance for negated Datalog
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The End
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Köhler, S., Ludäscher, B., and Smaragdakis, Y.
(2012).
Declarative datalog debugging for mere mortals.
Lecture Notes in Computer Science,
7494:111–122.

University of Sydney 21


	Introduction
	Provenance Computation
	Proof Trees
	Naïve Encoding
	Guided SLD

	Implementation in Soufflé
	Experiments and Results
	Conclusion

