
An Efficient Interpreter for Datalog
by De-specializing Relations

Xiaowen Hu
School of Computer Science
The University of Sydney

Australia
xihu5895@uni.sydney.edu.au

David Zhao
School of Computer Science
The University of Sydney

Australia
dzha3983@uni.sydney.edu.au

Herbert Jordan
University of Innsbruck

Austria
herbert.jordan@uibk.ac.at

Bernhard Scholz
School of Computer Science
The University of Sydney

Australia
bernhard.scholz@sydney.edu.au

Abstract

Datalog is becoming increasingly popular as a standard
tool for a variety of use cases. Modern Datalog engines can
achieve high performance by specializing data structures
for relational operations. For example, the Datalog engine
Soufflé achieves high performance with a synthesizer that
specializes data structures for relations. However, the syn-
thesizer cannot always be deployed, and a fast interpreter is
required.
This work introduces the design and implementation of

the Soufflé Tree Interpreter (STI). Key for the performance of
the STI is the support for fast operations on relations. We ob-
tain fast operations by de-specializing data structures so that
they can work in a virtual execution environment. Our new
interpreter achieves a competitive performance slowdown
between 1.32 and 5.67× when compared to synthesized code.
If compile time overheads of the synthesizer are also consid-
ered, the interpreter can be 6.46× faster on average for the
first run.

CCS Concepts: · Software and its engineering→ Inter-

preters.

Keywords: Interpreter Implementation, Datalog Engine, Sta-
tic Data Structure

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454070

ACM Reference Format:

Xiaowen Hu, David Zhao, Herbert Jordan, and Bernhard Scholz.

2021. An Efficient Interpreter for Datalog by De-specializing Rela-

tions. In Proceedings of the 42nd ACM SIGPLAN International Con-

ference on Programming Language Design and Implementation (PLDI

’21), June 20ś25, 2021, Virtual, Canada. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3453483.3454070

1 Introduction

Logic programming languages, such as Datalog, are gain-
ing in popularity for a variety of analysis problems due to
their succinctness and ease of use. In recent years, Datalog
has been extended in its expressiveness (e.g., functors, aggre-
gates, records, lattices, etc.) and used for various applications,
including static program analysis in Java [4] and Tensor Flow
programs [34], security-oriented analysis in Ethereum Vir-
tual Machine [24] and network analysis in Amazon Web
Services [7].

For these large-scale applications, the relations of a Data-
log program may contain up to billions of tuples. Hence, it
is performance-critical to efficiently represent and interact
with relations. Soufflé [28, 47] is a Datalog engine that uses
in-memory data structures for relations and has high per-
formance due to its synthesizer. The synthesizer compiles
a Datalog program into highly optimized and parallel C++
code, and can achieve performance comparable to optimized,
hand-crafted code.

However, the synthesizer is not always the preferred mode
of execution. For example, Datalog programs may be exe-
cuted in a Cloud environment that cannot run C++ compi-
lation tools (such as the Amazon Lambda Service in some
applications [7]). Other scenarios include the development
and debugging of Datalog applications, where re-compilation
for small program changes becomes too tedious. For such
scenarios, a fast interpreter for Datalog programs is para-
mount.

681

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454070
https://doi.org/10.1145/3453483.3454070

PLDI ’21, June 20ś25, 2021, Virtual, Canada Xiaowen Hu, David Zhao, Herbert Jordan, and Bernhard Scholz

Datalog

P
ar
se
r

AST

T
ra
n
sl
at
o
r

RAM Engine Result

Input Facts

Figure 1. Execution model of Soufflé

Naïve interpreter implementations for imperative lan-
guages may run hundreds or thousands of times slower
than the equivalent compiled code [18, 44], even with vari-
ous advanced implementation techniques to speed up their
performance [6, 14, 20, 21]. However, the research litera-
ture has little to offer on how to design and implement a
high-performance interpreter for Datalog languages such
as Soufflé [28, 47]. One of the main challenges is to find an
in-memory representation of relations for performing set
manipulation and access operations efficiently, since the in-
terpreter may execute such operations billions of times for a
single rule.
Soufflé’s synthesized C++ code can cope with such large

quantities of relational operations due to specialized in-mem-
ory data structures [29ś31, 40] called Datalog-Enabled Rela-
tional (DER) data structures [31]. A DER is an abstract data
type for storing tuples of fixed length as a set. The abstract
data type facilitates efficient inserts, membership tests, and
enumerations. In particular, DER data types offer efficient
range queries for predefined tuple orders. We refer to these
specialized range queries as primitive searches, which are
the most essential and performance-critical building blocks
for executing Datalog rules [48]. For each relation in the
Datalog program, the synthesizer specifically tailors a DER
data structure for a relation using C++ template parameters.
The parameters specify the DER’s implementation (B-tree,
trie, etc.), shape (the arity and types of the tuple elements),
and tuple orders/operations. While a synthesizer can gener-
ate static code using C++ templates, an interpreter cannot
directly utilize the templated data structures because of their
static nature. A new approach is necessary to de-specialize
these data structures so that a virtual execution environment
can pre-compile and adopt them. Further challenges include
optimizing the interpreter’s instruction dispatch and over-
coming the lack of optimization that a synthesizer would
otherwise allow.
Thus, the key challenges addressed by our work are: (1)

finding an approach for interpreters to benefit from the
deeply specialized primitives available to compiled engines,
(2) minimizing interpretation overheads of orchestrating
primitive operations, and (3) reducing the performance gap
between compiling and interpreting logic programming lan-
guage engines. In this work, we introduce the Soufflé Tree

Interpreter (STI), which is implemented in the style of an
Abstract Syntax Tree (AST) interpreter [3]. The STI uses DER
data structures that are specialized using C++ templates to
overcome performance limitations of previous interpreter
implementations. We also identify interpreter specific opti-
mizations that are crucial for performance. With our new
interpreter implementation techniques, the STI incurs an
overhead of only 1.32 Ð 5.67× on real-world benchmarks
when compared to the synthesized C++ code. If compilation
time is taken into account, the interpreter can be 6.46× faster
on average. This demonstrates its effectiveness for scenarios
where the synthesizer may not be preferred due to the large
overhead of the compilation process.
The contributions of this work are as follows:

1. We introduce an efficient tree interpreter implementa-
tion for Soufflé and explain its key design features.

2. We show how to de-specialize templated C++ data
structures and how to use them in a virtual execution
environment.

3. We provide four optimization techniques that improve
the performance of our interpreter and present their
impact on the overall performance.

Our de-specialization technique is not necessarily specific
to C++ and Souffle, and can be applied more generally when-
ever there are templated data structures in language imple-
mentationswith a large parameter space.With our technique,
these data structures can be instantiated at runtime by reduc-
ing the parameter space and enabling the implementation of
a fast interpreter.

2 Background

Datalog [1, 15] is a fragment of first-order logic with re-
cursion. A Datalog program is a set of Horn clauses [36]
of the form 𝐿0 :−𝐿1, . . . , 𝐿𝑛 where each 𝐿𝑖 is a literal of the
form 𝑅𝑖 (𝑥0, . . . , 𝑥𝑚) with relation 𝑅𝑖 of arity 𝑚. Each argu-

ment 𝑥𝑖 can either be a constant or a variable. We refer to
literal 𝐿0 as the head and literals 𝐿1, ..., 𝐿𝑛 as the body of the
clause. When the body of the clause is empty, it represents a
fact; otherwise, the clause represents a rule. Facts are also
known as an Extensional Database (EDB) in Datalog and are
unconditionally true [15]. For example,

𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑜𝑏,𝐴𝑙𝑖𝑐𝑒) . 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐴𝑙𝑖𝑐𝑒,𝐶𝑎𝑟𝑜𝑙).

682

An Efficient Interpreter for Datalog by De-specializing Relations PLDI ’21, June 20ś25, 2021, Virtual, Canada

represents facts that introduce the two tuples (𝐵𝑜𝑏,𝐴𝑙𝑖𝑐𝑒)
and (𝐴𝑙𝑖𝑐𝑒,𝐶𝑎𝑟𝑜𝑙) into relation parent.
The body of a rule consists of a set of literals joined by

conjunctions. The interpretation of a rule is as follows: If
all the literals in the body hold, then the head holds as well.
The facts derived from rules are called Intensional Database

(IDB). For example, the rule

𝑔𝑟𝑎𝑛𝑑_𝑝𝑎𝑟𝑒𝑛𝑡 (𝑋,𝑍) :−𝑝𝑎𝑟𝑒𝑛𝑡 (𝑋,𝑌), 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑌, 𝑍)

reads that 𝑋 is 𝑍 ’s grandparent if 𝑋 is the parent of 𝑌 , and
𝑌 is the parent of 𝑍 . Such a rule is evaluated by finding facts
matching the body literals, and generating the corresponding
head fact.
Datalog also allows recursion and negation. A rule is re-

cursive if the relation of the head appears in the body (i.e.,
the relation depends on itself). Rules may be mutually recur-
sive if their dependencies form a cycle. Negations appear in
the form of a negated literal, which holds true if the corre-
sponding positive literal does not hold. Datalog defines the
semantics of negation by stratification [1, 16, 50].

Soufflé. Soufflé [28, 47] is an extension of Datalog that
includes functors (e.g., string operations, binary constraints,
arithmetic operations), aggregates, components, typed struc-
tures (i.e., records), and facilitates debugging [54]. Soufflé
evaluates a program in phases as shown in Fig. 1. In the first
phase, Soufflé takes a Datalog program as input and gen-
erates an Abstract Syntax Tree (AST). In this stage, Soufflé
checks the input program for syntax and semantic errors
and applies high-level Datalog optimizations if possible. In
the next phase, Soufflé translates the AST to a Relational
Algebra Machine (RAM) program [47]. The RAM represen-
tation combines elements of relational algebra queries and
control flow to describe the Datalog program in an impera-
tive/relational fashion. The RAM representation ensures effi-
cient pre-runtime optimizations, such as automatically com-
puting indices for fast primitive searches and load-balancing
for parallel computation [48]. In the last phase, the RAM
program is either synthesized to a C++ program or executed
directly using an interpreter.

A RAM program is represented as a tree structure contain-
ing relation declarations, subroutines, and the main program.
The main program forms the root of the tree and calls subrou-
tines to execute each part of the program. Each subroutine
then contains relational operations that allow the execution
of Datalog rules, such as encoding primitive searches, filters,
and insertions.
Fig. 2 illustrates a simple security analysis application

written in Soufflé. The Datalog code identifies potentially
vulnerable regions in a program that are unprotected by
a security check. From Rule 1, a code block 𝑦 is unsafe if
there is an edge from an unsafe code block to 𝑦 and 𝑦 is not
protected. From Rule 2, a violation is a code block that is
vulnerable and unsafe.

Unsafe("while").

/* Rule 1 */

Unsafe(y):-

Unsafe(x),

Edge(x, y),

!Protect(y).

/* Rule 2 */

Violation(x):-

Vulnerable(x),

Unsafe(x).

Figure 2. Datalog Example: Security Analysis

Fig. 3 shows the fragment of the RAM representation for
Rule 1 of the example. In Line 1, the RAM program inserts
a tuple into the input relation delta_Unsafe. The next step
is to generate the knowledge for the Unsafe relation, which
corresponds to Rule 1 in the Datalog program (Fig. 2). Since
this rule is recursive, the rule evaluation uses a loop (Line 4).
The rule evaluation begins by checking for emptiness of
the body relations (Line 5). Then, a simple nested loop join
iterates through all tuples in delta_Unsafe, and finds the
matching tuples in Edge. If the tuple satisfies the negation
for Protect and if it does not already exist in Unsafe, then it is
inserted into new_Unsafe. If no new tuples are deduced, the
loop exits (Line 10). At the end of rule evaluation, the RAM
program merges the newly deduced tuples (new_Unsafe)
into the full relation (Line 11)1, then these new tuples forms
delta_Unsafe, which is used to compute the next iteration.

1 INSERT ("while") INTO delta_Unsafe

2 ...

3

4 LOOP

5 IF ((NOT (delta_Unsafe = ∅)) AND (NOT (Edge = ∅)))

6 FOR a IN delta_Unsafe

7 FOR b IN Edge ON INDEX b.0 = a.0

8 IF ((NOT (b.1) ∈ Protect) AND (NOT (b.1) ∈

Unsafe))↩→

9 INSERT (b.1) INTO new_Unsafe

10 BREAK (new_Unsafe = ∅)

11 MERGE new_Unsafe INTO Unsafe

12 SWAP (delta_Unsafe, new_Unsafe)

13 CLEAR new_Unsafe

14 END LOOP

15 ...

Figure 3. RAM representation of the example Datalog

The primary operations in a RAM program involve query-
ing and manipulating relations. For fast execution of RAM
programs, the synthesizer produces Datalog-Enabled Rela-
tional (DER) data structures [31] to represent relations. The
implementation, shape, and operations of the DER data struc-
ture are specialized by the synthesizer for a given input
program.

1In the latest versions of Soufflé, the MERGE operation is replaced by a FOR

loop over new_Unsafe whose tuples are inserted into Unsafe. The MERGE

was eliminated to reduce the instruction set.

683

PLDI ’21, June 20ś25, 2021, Virtual, Canada Xiaowen Hu, David Zhao, Herbert Jordan, and Bernhard Scholz

For example, consider the search operation on Line 7 of
Fig. 3. Here, the RAM program performs a search on the Edge
relation to find a range of tuples matching a particular value
for the first element (𝑏.0 = 𝑎.0). Such a filter operation con-
stitutes a primitive search [48]. Therefore, the Edge relation
should contain a data structure capable of accelerating this
particular search. For example, a B-tree with a lexicographi-
cal order where the first element is first would be suitable.
Such a data structure allows effective querying for a lower-
bound (i.e., the first tuple where 𝑏.0 = 𝑎.0), and an upper-
bound (i.e., the last tuple where 𝑏.0 = 𝑎.0). All elements
between the bounds are exactly those that satisfy the condi-
tion, thus the loop can be executed in time proportional to
the output size. Therefore, for this particular primitive search,
the synthesizer would choose a B-tree with the lexicographi-
cal order (𝑎0, 𝑎1) ≺ (𝑏0, 𝑏1) ⇔ 𝑎0 < 𝑏0 ∨ (𝑎0 = 𝑏0 ∧ 𝑎1 < 𝑏1)

to represent the Edge relation. While this example demon-
strates the specialization of set representation and lexico-
graphical order, the synthesizer also specializes in other as-
pects, such as the comparison for data types of tuple elements
(int, float, etc.).

Soufflé uses C++ templates for expressing DER data struc-
tures [31]. Souffle’s data structure portfolio consists of
Brie [29], B-Tree [30], and equivalence relation [40]. The
parameters of C++ templates instantiate the DER data struc-
ture for a concrete relation. For example, for the Edge relation
in the above example, the synthesizer will choose a B-tree
with Comparator<0,1> as a template to specify the lexico-
graphical order used to store the tuples. By using templates,
the synthesizer can statically optimize a relation to support
the required operations. Moreover, a single lexicographical
order may not be sufficient if there are multiple different
search operations, so the synthesizer must generate multiple
data structures for a single relation with different template
instantiations. The main reason for the use of C++ templates
is that parameters can be fully inlined by the C++ compiler
(e.g., comparator for tuples) to obtain high performance.

3 An Interpreter for Soufflé

The Soufflé Tree Interpreter (STI) is a recursive tree in-
terpreter that executes a RAM program. The STI employs
Datalog-Enabled Relational (DER) data structures [31] that
are de-specialized via adapters so that relational operations
are still vastly accelerated. The STI has its own intermediate
representation for a RAM program called the Interpreter Tree.
The Interpreter Tree amends the RAM representation (stored
as a tree internally) with runtime-specific information and
optimizations for the interpreter. The nodes in the Interpreter
Tree are called Interpreter Nodes (INode), which are light-
weight nodes that directly correspond to RAM nodes (except
in the case of super-instructions, discussed in Section 4.4),
and contain execution state and pre-computed values for
interpreting the RAM program. Each INode also encodes its

INode

opcode : enum

sPtr : void*

SNode

children : [SNode]

descriptive data..

Interpreter Tree
RAM Tree

Figure 4. Interpreter tree overview, INode is an interpreter
node, SNode is a source RAM node

type via an enum value, which allows nodes to be executed
using a fast and extensible switch dispatch while enabling
further optimizations (See Section 4.1). Lastly, each INode

contains a reference, which we refer to as a Shadow Pointer

(sPtr), to its corresponding RAM node so that the interpreter
can look up static information in the RAM node during ex-
ecution. The relationship between an INode and its RAM
node is illustrated in Fig. 4. As shown in the figure, we refer
to the corresponding RAM node as a Source Node (SNode).
In the design of the interpreter tree, we kept the interpreter
nodes lightweight, containing only what is necessary for the
execution state of the interpreter.

1 RamDomain execute(const INode* node, Context& context) {

2 switch (node->type) {

3 case(TupleElement): {

4 const auto& ram =

5 static_cast<TupleElement>(node->sPtr);

6 size_t tupleID = ram->getTupleID();

7 size_t elementID = ram->getElementID();

8 return context[tupleID][elementID];

9 }

10 case(Max): {

11 const auto a = execute(node->leftChild())

12 const auto b = execute(node->rightChild());

13 return std::max(a, b);

14 }

15 ...

16 }

17 }

Figure 5. An example of executing an INode

Fig. 5 shows an example of executing an INode. Here, the
execute method takes an INode and a context. The second
argument, context, is a runtime environment that man-
ages the creation and storage of runtime variables. Since STI
supports parallel computation, the interpreter must create
thread-local copies of context, and pass them as an argu-
ment for each invocation of execute. Inside the execute

method, a switch statement is performed on the node’s type
to dispatch a specific node, e.g., a TupleElement or Max op-
eration. Consider the TupleElement operation that accesses
and returns an element from a tuple stored in a relation. The
information for executing TupleElement is static and stored
in the RAM node. In Line 4ś5, a static cast (thus incurring

684

An Efficient Interpreter for Datalog by De-specializing Relations PLDI ’21, June 20ś25, 2021, Virtual, Canada

A B C Container
read/write

A C B
compare

order< 0, 2, 1 >

(a) Tuple IO in static version (Synthesizer)

A B C A C B Adapter

write 𝜙

read 𝜙 ′

read/write
A C B

compare

order< 0, 1, 2 >

(b) Tuple IO in dynamic version (Interpreter)

Figure 6. Tuple IO actions in synthesizer and interpreter.

no runtime overhead) converts the shadow pointer from a
raw pointer to the correct RAM pointer-type, and retrieves
the location of the target tuple from the source node (Line
6 − 8). The other operation, Max, does not need any extra
static information, and simply recursively evaluates the left
and right children to return the larger result. In summary, the
execution will either obtain information from the INode (i.e.
execution state or pre-processed values) or static information
from the RAM node via the shadow pointer.

De-specialization of Relational Data Structures. Dur-
ing runtime, tuples produced by the computation are stored
in relations. A relation in Soufflé’s generated C++ code is
a collection of DER data structures [31], each of which is
specialized to support the operations needed in the program.
The key to the synthesizer’s speed is that the DER data
structures are fully specialized from a large parameter space,
including the implementation (B-tree, trie, etc.), the arity,
the type (integer, float, etc.) of each element, and the set of
primitive searches.

The interpreter cannot adopt DER data structures directly
because of their static type parameters. A solution to this
problem could be to pre-generate all specialized versions for
the interpreter by enumerating the parameter space. How-
ever, the combinatorially large parameter space makes a
brute-force solution intractable. Therefore, we develop a
framework to de-specialize the DER data structures and sub-
stantially reduce the parameter space. As a consequence,
some of the functionality provided by the specializations
must be transferred to dynamic runtime adapters, which
require careful implementation so that performance is not
hampered.
The first de-specialization step is the reduction of the

set of all possible lexicographical orders of length 𝑁 to the
natural one (i.e., from 0 to 𝑁 − 1). The key observation for
this reduction is that tuples can be reordered before being
inserted, so that the ordering of inserted tuples determines
the ordering inside the data structure, as shown in Fig. 6a
and Fig. 6b. This de-specialization step also reduces the set
of primitive searches. With the natural ordering, there are
only 𝑁 primitive searches possible: E.g., the first element
is specified, the first two elements are specified, and so on.
All 𝑁 primitive searches can be pre-compiled for each data
structure.

1 // Base class providing a virtual interface for indexes

2 class IndexAdapter {

3 public:

4 virtual bool insert(Tuple) = 0;

5 virtual bool contains(Tuple) = 0;

6 };

7 // An adapter class containing a BTree index

8 template <size_t Arity>

9 class BTreeIndex : public IndexAdapter {

10 public:

11 bool insert(Tuple t) override {

12 return index.insert(order.encode(t));

13 }

14 bool contains(Tuple t) override {

15 return index.contains(order.encode(t);

16 }

17 ...

18 private:

19 BTree<Arity> index;

20 Order order;

21 };

22 // A factory producing indexes with arity btw. 1-16

23 unique_ptr<IndexAdapter> BTreeIndexFactory(size_t arity){

24 switch(arity) {

25 case(1): return make_unique<BTreeIndex<1>>();

26 ...

27 case(16): return make_unique<BTreeIndex<16>>();

28 default: fatal("Size not supported yet.");

29 }

30 }

Figure 7. Example of a factory and adapter

The second de-specialization step is to use only integer
types in the data structures, with runtime adapters convert-
ing other types to bit representations that can fit in integers.
The trade-off is that certain indexed operations can no longer
be applied, since ordering for integers may not correspond
to the same ordering for the target type, such as floating
point and unsigned numbers.

As a result, an index can be uniquely defined by its imple-
mentation type and arity. Since there are only a handful of
possible implementation types, and arities (in practice, we ob-
served up to 16), it is now feasible to pre-compile all versions
of the de-specialized DER data structures. This framework
is also easy to extend in case a user needs a higher arity
relation, or if a new DER data structure is introduced.

685

PLDI ’21, June 20ś25, 2021, Virtual, Canada Xiaowen Hu, David Zhao, Herbert Jordan, and Bernhard Scholz

1 #define FOR_EACH(func, ...) \

2 FOR_EACH_BTREE(func, __VA_ARGS__) \

3 FOR_EACH_BRIE(func, __VA_ARGS__) \

4 FOR_EACH_PROVENANCE(func, __VA_ARGS__) \

5 FOR_EACH_EQREL(func, __VA_ARGS__)

Figure 8.Macro specializing an instruction for an index type

Finally, we enable interpreter operations with those tem-
plate classes by building a dynamic adapter on top of the de-
specialized DER data structures which we refer to as indexes
in the interpreter. Fig. 7 demonstrates the use of a factory to
generate statically typed data structures, with a thin dynamic
adapter around it. The base IndexAdapter class enforces
the methods that are needed to interact with any under-
lying class. Then, the BTreeIndex implements the adapter,
with the insertmethod showcasing the dynamic reordering
necessary for the first de-specialization step of eliminating
different lexicographical orders. The BTreeIndexFactory

class then takes an arity, and returns a statically typed index
that matches the given arity.
Another source of a potential slowdown in the de-

specialized DER data structures is the iterator. Since the
adapter provides virtualized behaviour, the iterator oper-
ations supported by the DER data structure must also be
virtualized. However, a virtualized iterator can have huge
consequences for the performance of the interpreter, since
a program can easily have billions of iterator-related opera-
tions, and performing a virtual call for each operation can
be very costly. To amortize the cost of the virtualization, we
apply a buffer mechanism. With this mechanism, any read
request on the iterator would trigger the adapter to buffer
(arbitrarily chosen) 128 values from the underlying iterator,
allowing the following 127 requests to operate directly on the
buffer. Thus, on average, there only needs to be one virtual
call to the underlying iterator for every 128 read requests.

4 Optimizations

Interpreters such as STI can perform instructions billions of
times. Thus, frequently executed instructions that perform
simple tasks, including allocating a heap object, dispatching a
virtual function, or saving and restoring of some registers for
a function call, can add significant runtime overheads. How-
ever, not all kinds of instructions are frequently executed;
some are processed several orders of magnitudes more often
than others. To improve the performance of an interpreter,
it is important to identify frequently executed instructions
and minimize their runtime (even if only few CPU cycles are
eliminated by the optimizations).

One of our main techniques is to specialize instructions so
that parameters of a generic instruction become constants
in their specialized versions. Although these specializations
seem insignificant on the surface, they can significantly re-
duce runtime overheads for operations on specialized data

structures since the constants in the C++ code of the in-
terpreter enable further compiler optimizations when the
interpreter is translated to an executable.
Another interpreter optimization technique is replacing

frequently encountered sequences of instructions with a new
complex instruction that subsumes the sequence. The intro-
duction of łsuper-instructionsž reduces the total number
of instructions executed, and reduces the costs for instruc-
tion dispatch which is a major contributing factor for the
slow-down of an interpreter. In our work, we apply super-
instruction techniques for a tree interpreter. In the following,
we discuss the STI’s optimizations in more detail.

4.1 Static Access and Instruction Generation

The adapter design enables the interpreter to interact with
different types of indices during runtime uniformly. How-
ever, this strategy incurs an overhead because of the virtual
interfaces and the buffer mechanism. Additionally, virtual
function calls can be difficult for the compiler to inline be-
cause the target function to call is unknown until runtime.
Therefore, we seek a way to eliminate the extra overhead in
the adapter by enabling the interpreter to use a purely static
computation model that is similar to the synthesizer.
The idea is to make the interaction between the inter-

preter and the data structure static, by encoding the target
index’s type information in the interpreter instruction set.
For example, an insert operation that targets an index of type
<BTree, 3> (B-Tree implementationwith arity of 3) will have
Insert_BTree_3 as the enum value for its opcode. However,
explicitly introducing all of these instructions would drasti-
cally increase the code complexity. Therefore, we use C++
macros to create specialized versions of each instruction im-
plicitly. The central macro is shown in Fig. 8, which takes a
func (representing a base instruction), and creates special-
ized versions of it for each index representation.

For each representation, additional macros create versions
for each arity (in Fig. 9). Both macros also support variadic
arguments, so that they can map any instruction with any
arguments to specialized versions for all DER data structures
that Soufflé supports.

#define FOR_EACH_BTREE(func, ...)\

func(Btree, 0, __VA_ARGS__) \

/* ... */ \

func(Btree, 15, __VA_ARGS__) \

func(Btree, 16, __VA_ARGS__)

// Equivalence relation is a specialized binary relation

#define FOR_EACH_EQREL(func, ...)\

func(Eqrel, 2, __VA_ARGS__)

Figure 9. Macro specializing an instruction for each arity

For example, we can specialize the Insert operation into
different versions as shown in Fig. 10. The FOR_EACH macro

686

An Efficient Interpreter for Datalog by De-specializing Relations PLDI ’21, June 20ś25, 2021, Virtual, Canada

#define GEN_ENUM(Name, Data, Arity) \

Name##_##Data##_##Arity,

enum Token{

FOR_EACH(Insert, GEN_ENUM)

};

Figure 10. Example of Enum generation

will map the GEN_ENUM Macro on all the possible combina-
tions of arity and structures, encoding the type information
of the DER structure into operation name: Insert_BTree_0,
Insert_BTree_1, etc.

The final step is to generate a specialized instruction body.
This is done by moving the instruction body from within
the case statement into a template function. Inside each case
statement, instructions are generated to call each template
method. Fig. 11 shows an example, where Fig. 11a defines
the call to the template method, Fig. 11b invokes FOR_EACH
to generate the function calls, and Fig. 11c is the actual com-
putation of the instruction. Note that there are several per-
formance improvements here. Firstly, Arity is known at
compile time; hence the array allocation at Line 4 of Fig. 11c
is on the stack instead of on the heap as in the unoptimized
implementation. Secondly, the loop at Line 5 can now be
unrolled. Thirdly, the function call on target in Line 8 is
not a virtual call, hence does not need virtual dispatch and
can be inlined by the compiler. As a consequence, iterators
no longer need a buffer mechanism, since there is no virtual
call overhead anymore.

4.2 Static Tuple Reordering

As discussed in Section 3, tuples are reordered at runtime
to allow the de-specialization of reducing the possible num-
ber of comparators, so that only the natural lexicographical
orders are required. However, performing reordering at run-
time can reduce performance. Therefore, we exploit the static
nature of the RAM language. The basic idea is to rewrite the
RAM representation for tuple accesses so that data is read
in the natural lexicographical order of the indices. When
the RAM program is produced for a Datalog program, we
create an attribute env which simulates a runtime context.
For any operation that creates a tuple 𝑡 in the runtime envi-
ronment, env will record the tuple and 𝜙 , i.e., the ordering of
its elements. Later and during the lifetime of 𝑡 , if another op-
eration reads the 𝑖-th element of tuple 𝑡 , the code generator
will rewrite it as it is referencing the 𝜙 (𝑖)-th element, based
on what env recorded. Similarly, for a query operation, env
allows static reordering of the search ranges returned by the
index. We do not reorder the tuple of an insertion operation
statically, since a relation may consist of several indices, and
we have a single insert invocation that inserts a tuple to all
indices.

#define INSERT(Structure, Arity, ...)\

case(I_Insert_##Arity##_##Structure):{\

auto& rel = *static_cast\

<Insert_##Arity##_##Structure*>\

(node->getRelation()); \

return evalInsert(rel, cur);\

}

(a)Macro for calling template function

switch (node->type) {

// Generate special instruction using FOR_EACH Marco.

FOR_EACH(Insert)

// Regular case that does not need specialization.

case (Number): {

/* .. */

}

}

(b) Generate case statements in the switch loop

1 template<typename RelType>

2 RamDomain evalInsert(RelType& target, const SNode& cur) {

3 constexpr size_t Arity = Relation::_Arity;

4 t_tuple<RamDomain, Arity> data;

5 for (size_t i = 0; i < Arity; ++i) {

6 data[i] = eval(cur.children[i]);

7 }

8 target.insert(data);

9 return true;

10 }

(c) Actual function definition

Figure 11. Example of specializing an instruction

4.3 Reducing Register Pressure in Recursive

Function Calls

To transfer program control, the interpreter calls the
execute function with the child node as an argument. Since
the execution model of the Soufflé interpreter is recursive, it
is critical that the overhead of recursively calling execute is
minimized. At the assembly level, once the program enters
the execute function, it needs to allocate a new stack frame
and save all the callee-saved registers on the stack to prevent
instructions in the function from overwriting those registers’
values. The compiler determines what registers to save by
considering the instructions of the function body.
Since the execute function in STI contains only a long

switch statement, and all of the cases can be a possible target
to execute during runtime, the compiler would decide to save
the maximum possible number of registers needed for the
heaviest case statement. We observe that the resulting as-
sembly code spends six instructions to save the callee-saved
registers, which are not actually used by most interpreter
instructions. Additionally, it spends three instructions to
create a canary value to prevent stack buffer overflow at-
tacks [13]. However, this is not always needed since many
interpreter operations do not allocate a buffer on the stack.

687

PLDI ’21, June 20ś25, 2021, Virtual, Canada Xiaowen Hu, David Zhao, Herbert Jordan, and Bernhard Scholz

1 #define CASE(Type) \

2 case(Type): { \

3 return [&]() -> RamDomain { \

4 #define ESAC }();}

5

6 switch (node->type) {

7 CASE(Insert)

8 /* Actual computation */

9 ESAC(Insert)

10 }

Figure 12. Decorated case expression as a local lambda call

While these are only a few extra instructions, the interpreter
often has a deeply nested recursive call structure, and these
nine instructions in every recursive call can add up.
To work around the inefficiency of register allocation by

the C++ compiler, we put each of the interpreter instructions
inside of a local C++ lambda, to wrap it as a function call.
This can be achieved by decorating the case expression using
a macro as shown in Fig. 12. As a result, the compiler will
note that no callee-saved registers are needed, and it will
choose not to overreact. It now only stores the program stack
and immediately starts execution, saving nine instructions
per dispatch. The compiled code would then save registers
accordingly once entering the lambda, only if required.

The trade-off here is the extra function call, but we show
in the experiments that the saved instructions justify the
extra function call.

4.4 Super-instructions

Super-instructions are an optimization technique to merge
several small but frequent instructions into a large oper-
ation to reduce the total number of dispatches during in-
terpretation [14, 19, 42]. The possible candidates for super-
instruction optimization are combinatorially large, and dif-
ferent source programs can have different instruction usage,
so it is critical to choose the candidates effectively in or-
der to obtain general improvement across most programs.
Our candidates for super-instruction optimizations are se-
lected based on statistical results obtained from real-world
use cases.
The key observation is that many operations, such as

IndexScan and Insert, require results from runtime eval-
uation. Depending on the use case, the actual value being
scanned or inserted can be different, but in general, they fall
into three different categories:

1. Constant, in which case, the value to be fetched is
known during the compilation of the source program
and can be determined without runtime context.

2. TupleElement, in which case, the value is the result
of some temporary tuple in the runtime environment.
The actual tuple can come from user input or runtime
computation, and the exact value is unknown before

runtime. However, the location of target tuple in the
context is static and thus known during compilation.

3. The last case includes all other generic expressions,
e.g. arithmetic operations, for which we do not create
a super-instruction, as there are many possible sub-
expressions, which would introduce extra complexity
into the code. Moreover, these generic expressions are
comparatively rare in real-world usage.

Instead of dispatching and evaluating each sub-expression
individually, a super-instruction is designed to merge Con-
stant and TupleElement into their parent instruction to
eliminate extra dispatch costs. However, a single specialized
version of the operation is infeasible. For example, consider
one possible parent instruction, Insert. An Insert instruc-
tion inserts a list of runtime-evaluated values into a relation
as a new element; those values can come from a mixture of
Constant, TupleElement and other generic expressions. A
single new super-instruction cannot be used since the com-
bination of types of underlying value expressions are not
known until runtime. Therefore, generating all possible com-
binations of child sub-expressions for Insert is infeasible.
To overcome the issue, we introduce three extra fields

in the interpreter node. A constant field that stores a list
of paired elements, where the first element represents the
target location to store the result, and the second element
presents the actual number. Similarly, a tupleElements field
with a list of paired elements, where the first element is the
target location in the result tuple, and the second index is
the location of the runtime environment where the input
value should be read from. Finally, a GenericExpression

is defined similarly. By doing this, we push the dispatch
costs for constant and tupleElements from runtime to
compilation time. The code generation example is illustrated
in Fig. 13.

Node generateInsert(RamNode* node) {

Node ret;

for (size_t i = 0; i < num_of_operations; ++i){

auto op = node.getChildren(i);

if (op.type == Constant) {

ret.addConstant((i,op));

} else if (op.type == TupleElement) {

ret.addTupleElement((i, op));

} else {

ret.addGenericExpression((i, op));

}

}

/** Initialize other fields **/

return ret;

}

Figure 13. Generating super-instructions for Insert

Our super-instructions are different to prior work [42] in
the sense that we only apply it on constant and tuples, in-
stead of all possible children of the parent operation. During
runtime, we evaluate all three fields separately, as shown

688

An Efficient Interpreter for Datalog by De-specializing Relations PLDI ’21, June 20ś25, 2021, Virtual, Canada

in Fig. 14. Because the field already implies the operation
type, there is no need to perform instruction dispatch for
Constant and TupleElement. The trade-off is that our ap-
proach incurs the extra cost of fetching data from additional
data fields, as well as non-sequential write operations on the
result array. However, we observe that this technique is
ultimately beneficial due to the saved virtual dispatches.

RamDomain evalInsert(ShadowNode* node) {

/* initialize result tuple */

std::vector<RamDomain> tuple(n);

// Evaluate generic expression

for (auto& expr : node->expressions) {

/* Rely on dispatch to evaluate result */

}

// Retrieve constant value

for (auto& constant : node->constants) {

index = constant[0];

value = constant[1];

tuple[index] = value;

}

// Retrieve tupleElement

for (auto& t : node->tupleElements) {

index = t[0];

location = t[1];

tuple[index] = getValueFromRuntime(location);

}

/** insert tuple into relation **/

return result;

}

Figure 14. Super-instructions for an Insert operation

5 Performance Evaluation

To evaluate the performance of the Soufflé Tree Interpreter,
we carry out several experiments. The main aim of this sec-
tion is to examine the performance of the STI in comparison
to the synthesizer, and also to examine the impact of each
optimization technique. More specifically, we aim to answer
the following research questions:

1. Can STI be considered as a fast interpreter implemen-
tation? How fast is it compared to the synthesized C++
code?

2. What contributes to the remaining gap between the
performance of the interpreter and the synthesizer?

3. How much performance gain do we obtain from static
instruction generation and the other optimizations?

All benchmarks are run five times on an Intel Xeon Gold
6130 CPU@2.10GHz. The operating system is Fedora 32, and
all C++ executables are compiled with GCC 10.2.1. Through-
out this section, unless specified, STI refers to the implemen-
tation with all previously discussed optimization techniques
applied. For the interpreter, the execution time includes the
extra code generation of the Interpreter Tree. For the synthe-
sizer, unless specified, only the execution time of the com-
piled binary is measured, excluding the time for synthesizing
and compiling the C++ code.

Our benchmarks are as follows:

• Virtual Private Cloud (VPC) benchmark [7]. A real-
world network reachability reasoning tool, which pro-
vides a security analysis for Amazon’s Cloud service.
Soufflé is part of the logic reasoning engine in VPC.

• DDisasm [22] is a disassembler that produces assem-
bly code. The disassembler engine is implemented in
Datalog which Soufflé executes; it takes input a bi-
nary and reconstructs the assembly code with proper
symbolic information. For the experiment, we use the
SpecCPU2006 [25] benchmarks as input data for DDis-
asm.

• DOOP [11] is a general and fast framework for the
static points-to analysis of Java programs that pro-
duces precise analyses including context-insensitive,
context-sensitive, call-site sensitive and object sensi-
tive analyses. For this experiment, we use the 1-object-
sensitive+heap analysis along with the DaCapo [10]
benchmark suite.

5.1 Overall Performance

The overall performance evaluation is demonstrated in
Fig. 15, illustrating the relative execution time of the in-
terpreter compared to the compiled C++ code. In DOOP
and VPC benchmarks, STI execution time is 1.41× - 2.2×
slower than the C++ code. The slowdown ratio in the DDis-
asm benchmarks ranges from 1.32× to 5.67×, except for the
specrand benchmark, which has a slowdown up to 23×.
However, specrand is an exceptionally short benchmark,
the runtime on our machine was 0.46 seconds vs. 0.02 sec-
onds, and the large slowdown ratio comes from the extra
code generation processes (translating RAM to interpreter
nodes) in the interpreter. Overall, STI is 1.32 Ð 5.67× slower
than the compiled C++ code in the real-world use cases,
demonstrating that it is an efficient interpreter and a good
alternative when the synthesizer cannot be used.
To emphasize the necessity of using static de-specialized

relations in Soufflé, we also evaluate the performance of a
legacy interpreter implementation. The main difference be-
tween the STI and the legacy interpreter is the comparator.
The legacy interpreter uses a runtime comparator which
represents the lexicographical order in an array. Due to the
comparator being provided as a runtime argument, it cannot
benefit from compiler optimizations. Since the comparator is
executed for every internal data structure operation, perfor-
mance suffers. For VPC, the legacy interpreter only finished
two of the benchmarks within a 120-minute timeout, while
STI finished the largest benchmark in 35 minutes. The two
finishing benchmarks are 9.8× and 10.2× slower than the
compiled C++ code respectively. For DOOP, the slowdown
ratio of the legacy interpreter is up to 12×; and for DDisasm,
the largest slowdown ratio we observed happened in gcc,
which is 43× slower.

689

PLDI ’21, June 20ś25, 2021, Virtual, Canada Xiaowen Hu, David Zhao, Herbert Jordan, and Bernhard Scholz

ch
ar
t

an
tl
r

p
m
d

x
al
an

lu
se
ar
ch

lu
in
d
ex

jp
y
th
o
n

fo
p

h
sq
ld
b

el
ic
p
se

b
lo
at

1.6

1.8

2

2.2

1.
9

2.
2

1.
71

1.
92

1.
63

1.
6

1.
59

1.
77 1.
82

1.
66

1.
94

(a) DOOP slowdown ratio.

N
-1
07
5-
se
c1

N
-1
07
5-
se
c2

N
-1
07
5-
se
c3

N
-2
34
0-
se
c1

N
-2
34
0-
se
c2

N
-2
34
0-
se
c3

N
-3
50
0-
se
c1

N
-3
50
0-
se
c2

N
-3
50
0-
se
c3

N
-3
51
1-
se
c1

N
-3
51
1-
se
c2

N
-3
51
1-
se
c3

N
-9
08
7-
se
c1

N
-9
08
7-
se
c2

N
-9
08
7-
se
c3

1.4

1.6

1.8

1.
59

1.
5

1.
41

1.
49

1.
5

1.
46

1.
69 1.

73

1.
69 1.
72 1.
75

1.
64 1.
67

1.
72 1.

76

(b) VPC slowdown ratio.

p
er
lb
en
ch g
cc

g
am

es
s

g
ro
m
ac
s

ca
ct
u
sA

D
M

g
o
b
m
k

d
ea
lI
I

p
o
v
ra
y

ca
lc
u
li
x

h
26
4r
ef

to
n
to

o
m
n
et
p
p

w
rf

sp
h
in
x
3

x
al
an
cb
m
k

as
ta
r

h
m
m
er

li
b
q
u
an
tu
m

sp
ec
ra
n
d

b
w
av
es

lb
m

m
cf

sj
en
g

ze
u
sm

p
so
p
le
x

m
il
c

G
em

sF
D
T
D

b
zi
p
2

2

4

6

2.
86

5.
67

2.
68

2.
22 2.
52

5.
34

5.
34

2.
66

2.
04 2.
42

1.
32

3.
22

2.
06

2.
06

2.
06

2.
83

2.
18
2.
92

23
3.
19

4
5.
41

2.
79

1.
55
2.
21

1.
97

1.
7

2.
47

(c) DDisasm slowdown ratio.

Figure 15. Execution time slowdown ratio to the synthesizer (lower is better). Y-axis is the slowdown ratio vs. the C++ runtime.

To further determine the effectiveness of STI for rapid-
prototyping, we examine the time ratio between the full
synthesizer runtime (compilation + execution) and inter-
preter runtime, i.e. the number of times the interpreter can
execute a certain benchmark before the synthesizer finishes
its first run. For example, a ratio of 2 means the interpreter
can complete the benchmark twice before the synthesizer
finishes its first computation. Table 1 summarizes the results.
Most of the benchmarks in VPC has an average < 1 ratio,
which means the synthesizer can likely finish before the
interpreter, even when including the compilation time. Since
the source Datalog program purely determines the compi-
lation time while the execution time is determined by both
the source program and the input data, benchmarks with
relatively small/simple input facts tend to have a higher ratio.
The main reason for a less-than-one ratio in VPC is because
it contains extremely long-running benchmarks. The compi-
lation time of the VPC source program is around 2 minutes;
however, with large/complex input data, the runtime can be
up to 35 minutes. For DDisasm, 90% of the benchmarks have
a ratio greater than one, while the remaining benchmarks are
lower than one for a similar reason to VPC Ð large/complex
input facts diminishing the impact of compilation time. Nev-
ertheless, with an average ratio of 15.2, it still makes the
interpreter the perfect choice for prototyping in this bench-
mark. DOOP has an average ratio of 2.12, and all benchmarks
have similar values. This is due to the Java standard library

Table 1. Runtime ratio of each benchmark when compila-
tion time is also considered. Higher values indicate that the
interpreter is advantageous

Ratio VPC DDisasm DOOP

of values ≥ 1 20.0% 90.0% 100.0%

avg 0.79 15.2 2.12

max 1.30 42.0 2.54

min 0.62 0.44 1.63

being common between all these Java projects, so the per-
formance characteristics of points-to analysis are relatively
similar between the benchmarks. All benchmarks in DOOP
have a ratio larger than 1, which means for prototyping, the
interpreter is always the better option. The average overall
ratio, when all benchmarks are considered, is 6.46. Another
factor to consider is that during the rapid prototyping and
development phase, a user will typically use smaller input
data, leading to a larger ratio and the interpreter becoming
more effective than the synthesizer.

5.2 Performance Gap

0

5

10

15

20

25

1 5 10 15 20 25 30 35

20

40

60

80

Slowdown Ratio

R
u
le
C
o
u
n
t

moved_label

moved_label_class

symbolic_operand_candidate

in_function_initial

%
o
f
g
ap

Figure 16. Bar plot is a histogram of slowdown ratio of
each rule in gamess, with 30 bins. Points represent each bins’
contribution to the total performance gap.

To further investigate the gap in performance between
the interpreter and synthesizer, we perform a case study
on a poorly performing benchmark: the gamess benchmark
from DDisasm. This benchmark is chosen for demonstration
purposes due to its simple profiler output, although it is not
the slowest benchmark overall. The case study is carried out
by using Soufflé’s built-in profiler to closely investigate the
computation of each rule within the Soufflé program, and

690

An Efficient Interpreter for Datalog by De-specializing Relations PLDI ’21, June 20ś25, 2021, Virtual, Canada

to identify any performance bottleneck. We compare the
slowdown of each corresponding rule in Fig. 16. The y-axis
represents the number of counts of rules that are within a
certain range of slowdown. The red points represent each
bars’ contribution to the total performance gap.
Rules that have runtime less than 0.01 second are dis-

carded in the analysis. The majority of the rules (81) are less
than 2.5× slower and in total contribute to 17.83% of the
performance gap. There are 107 rules in total that have a
slowdown ratio of less than 10, contributing to 27.05% of the
total performance gap. The remaining bars have slowdown
ratios of more than 10, each containing only a single rule,
which are 10×, 23×, 29×, and 32× slower than the synthe-
sized code respectively. These four outlier rules contribute
to the majority of the performance gap - nearly 73%.

Among the outliers, the rule moved_label contributes the
most to the performance gap, and its RAM representation
is shown in Fig. 17. The main structure of moved_label is
a loop-nest with a depth of 2 and each loop has a inner
filter operation. Based on the statistics given by the Soufflé
profiler, the outer for-loop is iterated 126K times and the
inner-most loop is iterated 544M times. The main culprit of
the slowdown here is the inner-most filter operation, with the
many low-level arithmetic operations in the filter requiring
14 dispatches at the interpreter level, which are then executed
544M times, results in over 7 billion dispatches.
To confirm the hypothesis, we hand-crafted a super-in-

struction that computes this particular condition in the filter
operation. During execution, instead of dispatching the con-
dition, the function pointer is executed directly with the
runtime environment as the function argument. As a result
of the super-instructions, the number of dispatches for the
filter operation drops from 14 to just 1. The performance of
moved_label with the hand-crafted super-instructions im-
proves significantly, reducing its computation time from 44s
to only 4s. The significant improvement is due to the massive
number of iterations in the inner-most loop, which amplifies
the impact of only a few dispatches per loop. We observe a
similar structure in the other three outlier rules as well Ð a
condition statement that contains several dispatches, which
then results in a large number of total dispatches because of
a large number of inner loop iterations. For each of these out-
lier rules, we built custom super-instructions to reduce the
dispatch overheads. Using these super-instructions, the total
runtime is reduced from 331s to 209s, pushing the slowdown
ratio down from 2.7 to 1.7. The same pattern is observed in
other benchmarks as well, and by building super-instructions
we were able to confirm the same hypothesis on them. For
the slowest benchmark, gcc, which contains 7 such patterns,
runtime is improved by 27% with custom super-instructions.

1 FOR a IN symbolic_operand ON INDEX a.3 = 131

2 IF ((NOT (a.0,a.1,_,_,_) ∈

moved_displacement_candidate)↩→

3 AND (NOT (a.0,a.1,_,_) ∈ moved_immediate_candidate))

4 FOR b IN symbol ON INDEX b.0 <= a.2

5 IF ((a.2 < (b.0+b.1)) AND (b.0 != a.2))

6 INSERT (a.0, a.1, a.2, b.0) INTO moved_label

Figure 17. RAM representation of moved_label

5.3 Static Access and Instruction Generation

The impact of static instruction generation is shown in Fig. 18
by comparing its relative execution time against the inter-
preter implementation with a dynamic adapter. The improve-
ment in performance is significant, being 24.4% faster on
average and up to 55% faster, and is effective across all bench-
marks. The performance improvement comes from several
aspects. Firstly, the elimination of virtual function calls in the
accesses to the data structure can save a considerable amount
of cost, since a relation can be iterated billions of times. Sec-
ondly, better memory management is possible since the size
of every runtime tuple is known at compile time, and mem-
ory can then be allocated on the stack directly instead of on
the heap. Thirdly, it exposes more optimization opportuni-
ties to the compiler, since the target function to call is now
static instead of dynamic.
Finally, regarding the code complexity of the technique,

our approach yields only about 1800 lines of easily extensible
code while the dynamic approach resulted in 2200 lines of
code. The difference is mainly due to the extra complexity
from the buffer mechanism and the extensive amount of
sub-typing for each data structure.

5.4 Super-instructions

The performance improvement from super-instruction is
shown in Fig. 19, by comparing execution time against the
interpreter without super-instructions. On average, the in-
terpreter with super-instructions achieves a 13.75% speedup.
From the statistics report of the Soufflé profiler, by avoid-
ing dispatch for evaluating constants and tuples, our super-
instruction technique eliminates 22.01% of dispatches on
average. The positive impact of super-instructions demon-
strates the significance of dispatch overhead in the STI. In
Soufflé, insertions and range queries are common opera-
tions, similar to how load operations are frequent in general-
purpose languages [18, 39]. Therefore, optimizing for these
common patterns by using super-instructions can make a
considerable improvement.

5.5 Static Reordering and Reducing Register

Pressure

Static tuple reordering brings 3.2% Ð 5.1% of the performance
improvement based on our experiments. This improvement
applies consistently across all benchmarks and further em-
phasizes the importance of trading off dynamic operations

691

PLDI ’21, June 20ś25, 2021, Virtual, Canada Xiaowen Hu, David Zhao, Herbert Jordan, and Bernhard Scholz

ch
ar
t

an
tl
r

p
m
d

x
al
an

lu
se
ar
ch

lu
in
d
ex

jp
y
th
o
n

fo
p

h
sq
ld
b

el
ic
p
se

b
lo
at

N
-1
07
5-
se
c1

N
-1
07
5-
se
c2

N
-1
07
5-
se
c3

N
-2
34
0-
se
c1

N
-2
34
0-
se
c2

N
-2
34
0-
se
c3

N
-3
50
0-
se
c1

N
-3
50
0-
se
c2

N
-3
50
0-
se
c3

p
er
lb
en
ch

x
al
an
cb
m
k

sp
h
in
x
3

w
rf

to
n
to

o
m
n
et
p
p

h
26
4r
ef

ca
lc
u
li
x

p
o
v
ra
y

d
ea
lI
I

g
o
b
m
k

ca
ct
u
sA

D
M

g
ro
m
ac
s

g
am

es
s

g
cc

as
ta
r

h
m
m
er

li
b
q
u
an
tu
m

sp
ec
ra
n
d

b
w
av
es

lb
m

m
cf

sj
en
g

b
zi
p
2

G
em

sF
D
T
D

m
il
c

so
p
le
x

ze
u
sm

p

0.4

0.6

0.8

1

1.2
0.
7 0.
77

0.
77

0.
79

0.
7

0.
71

0.
7 0.
77

0.
76

0.
69

0.
88

0.
45 0.
49

0.
49

0.
49

0.
47

0.
48

0.
73

0.
69 0.
77 0.
79

0.
79

0.
79

0.
77 0.

87
0.
82

0.
8

0.
81

0.
79

0.
82

0.
81

0.
8

0.
8

0.
74 0.
83 0.
85

0.
83 0.
86

0.
86

0.
85

0.
86

0.
86

0.
82 0.
84

0.
83

0.
83

0.
82

0.
84

R
el
at
iv
e
E
x
ec
u
ti
o
n
T
im

e

DOOP VPC DDISASM

Figure 18. Performance impact of the static interface (lower is better). The execution time is relative to the dynamic adapter
approach (runtime = 1).

ch
ar
t

an
tl
r

p
m
d

x
al
an

lu
se
ar
ch

lu
in
d
ex

jp
y
th
o
n

fo
p

h
sq
ld
b

el
ic
p
se

b
lo
at

N
-1
07
5-
se
c1

N
-1
07
5-
se
c2

N
-1
07
5-
se
c3

N
-2
34
0-
se
c1

N
-2
34
0-
se
c2

N
-2
34
0-
se
c3

N
-3
50
0-
se
c1

N
-3
50
0-
se
c2

N
-3
50
0-
se
c3

p
er
lb
en
ch

x
al
an
cb
m
k

sp
h
in
x
3

w
rf

to
n
to

o
m
n
et
p
p

h
26
4r
ef

ca
lc
u
li
x

p
o
v
ra
y

d
ea
lI
I

g
o
b
m
k

ca
ct
u
sA

D
M

g
ro
m
ac
s

g
am

es
s

g
cc

as
ta
r

h
m
m
er

li
b
q
u
an
tu
m

sp
ec
ra
n
d

b
w
av
es

lb
m

m
cf

sj
en
g

b
zi
p
2

G
em

sF
D
T
D

m
il
c

so
p
le
x

ze
u
sm

p

0.6

0.8

1

1.2

0.
8 0.
84

0.
83

0.
98

0.
82
0.
94

0.
84 0.
86 0.
89

0.
9 0.
92

0.
93

0.
93

0.
9

0.
89 0.
91 0.
94

0.
95

0.
82
0.
94

0.
95

0.
93

0.
8 0.
83 0.
88

0.
8

0.
75 0.

84
0.
96

0.
95

0.
9

0.
79 0.
83

0.
8

0.
76 0.
79

0.
8

0.
81
0.
94

0.
86

0.
87

0.
88

0.
76 0.
8 0.
84

0.
8

0.
81 0.
83

R
el
at
iv
e
E
x
ec
u
ti
o
n
T
im

e

DOOP VPC DDISASM

Figure 19. Performance impact of super-instructions (lower is better). The execution time is relative to the pre-optimized
version (runtime = 1).

for static ones. The modest performance improvement is
because the most frequent operation, insertion, cannot be
reordered statically. An insertion operation targets a whole
relation, where each underlying data structure requires a
different order. One possible solution is to extend the STI
instruction set to support insertion targets on a single in-
dex, which then can be reordered individually. However, this
would require splitting a single relation-wise insertion into
many small index-specific insertions and may significantly
increase the total number of dispatches.
Meanwhile, reducing register pressure eliminates 5% -

12.5% of assembly instructions. The performance improve-
ment is 6.3% on average, which suggests our approach of
trading off extra function calls with more efficient register
allocation pays off. This is because lightweight interpreter
instructions which do not need any callee-saved registers are
executed more frequently than heavy instructions. Overall,
this optimization trick has a substantial performance impact.

6 Related Work

Datalog Engines and Logic Programming. There are
many Datalog engines, including LogicBlox [5], bddb-
ddb [35], and DDLog [45]. LogicBlox is a Datalog engine fo-
cused on business applications. While it is a rich and feature-
filled language, it does not have the highly specialized data
structures and optimizations that Soufflé applies in its syn-
thesizer. Meanwhile, bddbddb translates Datalog programs
into efficient binary decision diagrams (BDDs). However,
manual variable ordering is key for performance in these
BDDs, and automatic techniques such as Soufflé’s automatic
index selection [48] do not apply. On the other hand, DDLog
is a compiler, that synthesizes a Differential Dataflow-based
program [38] from a Datalog program, allowing for effective
incremental evaluation. However, DDLog does not include
an interpreter, and its compilation can often be quite slow.
Outside of Datalog, there are other logic programming

languages, such as Prolog [53], XSB [46] and Flix [37]. Pro-
log and XSB engines are essentially compilers that produce
low-level code targeted at the Warren Abstract Machine [51].
Meanwhile, Flix produces efficient code targeted at the Java

692

An Efficient Interpreter for Datalog by De-specializing Relations PLDI ’21, June 20ś25, 2021, Virtual, Canada

Virtual Machine. While variants of Prolog, such as SWI-
Prolog [52], include an interpreter, their backward chain-
ing approach is very different to Soufflé’s forward chaining.
Backward chaining relies heavily on effective unification
and backtracking, while forward chaining instead requires
efficient manipulation of relations.

Soufflé [28, 47] is a Datalog compiler, with its synthesizer
producing high-performance parallel C++ code. The special-
izations and optimizations applied by Soufflé synthesizer
make it the perfect platform to apply de-specializations to
implement an effective Datalog interpreter.
Database Systems. The database community has been

working on the efficient execution of queries using fast inter-
preters and JIT techniques [2, 32, 33]. However, their systems
have a data-centric view with ACID properties for transac-
tions and persistent storage for relations. In our work and
others [35, 45], a Datalog program becomes a computational
device that runs in isolation with volatile in-memory rela-
tions.
Interpreter Optimization. Linear bytecode representa-

tions have been shown to be effective for interpreter effi-
ciency [18]. Hence, many performant interpreters, such as
for Java [49] and Python [23] have chosen linear bytecode
representations. However, the execution characteristics of
Soufflé contains deeply nested loops and billions of iterations.
A linear representation of Soufflé that encodes a loop with
two instructions (i.e. direct jump and conditional jump) has
been shown to cause high dispatch overhead [26].
Many modern interpreter optimizations, such as

Python [23] and Lua [27], put focus on the dispatch loop.
The general optimization approach is to either reduce the
number of dispatches through super-instructions [42],
or to better guide the hardware branch predictor with
dispatching methods such as threaded code or indirect
threaded code [9, 17]. The latter approach is becoming
less effective as modern hardware is getting substantially
better at branch prediction [43]. For higher abstraction level
languages such as Soufflé, the dispatch cost is even less
critical [12, 39]. Our experiments suggest that using indirect
threaded code only brings a 3% performance improvement
for Soufflé’s interpreter, in the best case.

Ertl, et al. [14, 19] emphasized the impact of super-instruc-
tions on modern interpreters. They also came up with the
idea of generating super-instruction dynamically during the
execution, which is essentially a Just-in-Time technique (JIT).
Our super-instruction technique is purely static, but the
case study of the performance gap indeed suggests that STI
may benefit by JITing heavily executed statements in the
innermost loop.
The JIT technique [6] is also attractive because it can en-

able the interpreter to utilize static data structures during
runtime. Nevertheless, the deployment of JIT technology for

Soufflé may not be practical because of the extreme complex-
ity of the underlying static data structures. For example, Souf-
flé’s B-Tree has 2344 lines of templated C++ code. Another
application for JIT is to deploy tailored super-instructions at
runtime. For example, the hand-written super-instructions
demonstrated in section 5.2 are shown to be critical for the
remaining performance bottleneck in our system.

7 Conclusion

Modern Datalog engines, including Soufflé, execute logic pro-
grams efficiently because of their static optimizations for re-
lational data structures at compile-time. However, these tem-
plated data structures cannot be employed for interpreters.
This work introduces the Soufflé Tree Interpreter, which can
utilize the templated Datalog Enabled Relation (DER) frame-
work [31]. To use DER data structures in the interpreter, we
de-specialize them at runtime. By reducing the possible pa-
rameter space, the DER data structures can be pre-compiled
and used by the interpreter with an adapter. The idea of
de-specialization is not necessarily specific to C++ and Souf-
fle and can be applied more generally whenever there are
templated data structures with a large parameter space. For
example, similar techniques could be used for tensor struc-
tures in MatLab [8] for specialized template data structure in
their interpreter. Another example is other relation engines
such as HyPer [41] for implementing a fast interpreter.

We also identified four key optimizations that further im-
prove the performance of the Soufflé Tree Interpreter (STI).
The STI performance is evaluated using a comprehensive
benchmark suite consisting of a range of real-world Dat-
alog examples, demonstrating a slowdown of only 1.32 Ð
5.67 × compared to the synthesized C++ code. If the syn-
thesizer’s compile-time overheads are also considered, the
interpreter can be 6.46 × faster for the first run. In the future,
a promising research direction is to dynamically construct
super-instructions in conjunction with light-weight JIT tech-
niques to further reduce the performance gap between the
interpreter and synthesizer.

Acknowledgments

Wewould like to thank Martin Bravenboer and Sam Arch for
reading and commenting on a early draft of this paper. This
research was supported partially by the Australian Govern-
ment through the ARC Discovery Project funding scheme
(DP210101984).

References
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations

of Databases: The Logical Level (1st ed.). Addison-Wesley Longman

Publishing Co., Inc., USA.

[2] Yanif Ahmad, Oliver Kennedy, Christoph Koch, andMilos Nikolic. 2012.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently

Fresh Views. Proc. VLDB Endow. 5, 10 (2012), 968ś979. https://doi.org/

10.14778/2336664.2336670

693

https://doi.org/10.14778/2336664.2336670
https://doi.org/10.14778/2336664.2336670

PLDI ’21, June 20ś25, 2021, Virtual, Canada Xiaowen Hu, David Zhao, Herbert Jordan, and Bernhard Scholz

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.

Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-

Wesley Longman Publishing Co., Inc., USA.

[4] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis.

2017. Porting doop to Soufflé: a tale of inter-engine portability for

Datalog-based analyses. In Proceedings of the 6th ACM SIGPLAN Inter-

national Workshop on State Of the Art in Program Analysis, SOAP@PLDI

2017, Barcelona, Spain, June 18, 2017, Karim Ali and Cristina Cifuentes

(Eds.). ACM, 25ś30. https://doi.org/10.1145/3088515.3088522

[5] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan

Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn.

2015. Design and Implementation of the LogicBlox System. In Pro-

ceedings of the 2015 ACM SIGMOD International Conference on Man-

agement of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). As-

sociation for Computing Machinery, New York, NY, USA, 1371ś1382.

https://doi.org/10.1145/2723372.2742796

[6] John Aycock. 2003. A Brief History of Just-in-Time. ACM Comput.

Surv. 35, 2 (June 2003), 97ś113. https://doi.org/10.1145/857076.857077

[7] John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew

Gacek, Alan J. Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov,

Jure Kukovec, Sean McLaughlin, Jason Reed, Neha Rungta, John Size-

more, Mark A. Stalzer, Preethi Srinivasan, Pavle Subotic, Carsten Varm-

ing, and Blake Whaley. 2019. Reachability Analysis for AWS-Based

Networks. Lecture Notes in Computer Science, Vol. 11562. Springer,

231ś241. https://doi.org/10.1007/978-3-030-25543-5_14

[8] Brett W Bader and Tamara G Kolda. 2008. Efficient MATLAB compu-

tations with sparse and factored tensors. SIAM Journal on Scientific

Computing 30, 1 (2008), 205ś231. https://doi.org/10.1137/060676489

[9] James R. Bell. 1973. Threaded Code. Commun. ACM 16, 6 (1973),

370ś372. https://doi.org/10.1145/362248.362270

[10] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.

Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.

Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,

T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The

DaCapo Benchmarks: Java Benchmarking Development and Analysis.

InOOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference

on Object-Oriented Programing, Systems, Languages, and Applications

(Portland, OR, USA). ACM Press, New York, NY, USA, 169ś190. https:

//doi.org/10.1145/1167473.1167488

[11] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative

specification of sophisticated points-to analyses. In Proceedings of the

24th Annual ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA 2009, October

25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T. Leavens

(Eds.). ACM, 243ś262. https://doi.org/10.1145/1640089.1640108

[12] Stefan Brunthaler. 2009. Virtual-Machine Abstraction and Optimiza-

tion Techniques. Electron. Notes Theor. Comput. Sci. 253, 5 (2009), 3ś14.

https://doi.org/10.1016/j.entcs.2009.11.011

[13] Randal E. Bryant and David R. O’Hallaron. 2015. Computer Systems:

A Programmer’s Perspective plus MasteringEngineering with Pearson

EText ś Access Card Package (3rd ed.). Pearson.

[14] Kevin Casey, M. Anton Ertl, and David Gregg. 2007. Optimizing

indirect branch prediction accuracy in virtual machine interpreters.

ACM Trans. Program. Lang. Syst. 29, 6 (2007), 37. https://doi.org/10.

1145/1286821.1286828

[15] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always

Wanted to Know About Datalog (And Never Dared to Ask). IEEE Trans.

Knowl. Data Eng. 1, 1 (1989), 146ś166. https://doi.org/10.1109/69.43410

[16] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1990. Logic Program-

ming and Databases. https://doi.org/10.1007/978-3-642-83952-8

[17] Robert B. K. Dewar. 1975. Indirect Threaded Code. Commun. ACM 18,

6 (1975), 330ś331. https://doi.org/10.1145/360825.360849

[18] M. Anton Ertl and David Gregg. 2003. The Structure and Performance

of Efficient Interpreters. J. Instr. Level Parallelism 5 (2003). http:

//www.jilp.org/vol5/v5paper12.pdf

[19] M. Anton Ertl and David Gregg. 2004. Combining Stack Caching with

Dynamic Superinstructions. In Proceedings of the 2004 Workshop on

Interpreters, Virtual Machines and Emulators (Washington, D.C.) (IVME

’04). Association for Computing Machinery, New York, NY, USA, 7ś14.

https://doi.org/10.1145/1059579.1059583

[20] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. 2002.

Vmgen - a generator of efficient virtual machine interpreters. Softw.

Pract. Exp. 32, 3 (2002), 265ś294. https://doi.org/10.1002/spe.434

[21] M. Anton Ertl and Tu Wien. 2001. Threaded Code Variations and

Optimizations. In in EuroForth. 49ś55.

[22] Antonio Flores-Montoya and Eric M. Schulte. 2020. Datalog Disas-

sembly. In 29th USENIX Security Symposium, USENIX Security 2020,

August 12-14, 2020, Srdjan Capkun and Franziska Roesner (Eds.).

USENIX Association, 1075ś1092. https://www.usenix.org/conference/

usenixsecurity20/presentation/flores-montoya

[23] The Python Software Foundation. 2020. CPython Im-

plementation. https://github.com/python/cpython/blob/

f03d318ca42578e45405717aedd4ac26ea52aaed/Python/ceval.c#L1017

[24] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis.

2019. Gigahorse: thorough, declarative decompilation of smart con-

tracts. In Proceedings of the 41st International Conference on Software En-

gineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M.

Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 1176ś1186.

https://doi.org/10.1109/ICSE.2019.00120

[25] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.

SIGARCH Comput. Archit. News 34, 4 (Sept. 2006), 1ś17. https:

//doi.org/10.1145/1186736.1186737

[26] Xiaowen Hu. 2020. An Efficient Interpreter for Soufflé. (07 2020).

Honours Thesis.

[27] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, andWaldemar Ce-

les Filho. 2007. The evolution of Lua. In Proceedings of the Third ACM

SIGPLAN History of Programming Languages Conference (HOPL-III),

San Diego, California, USA, 9-10 June 2007, Barbara G. Ryder and Brent

Hailpern (Eds.). ACM, 1ś26. https://doi.org/10.1145/1238844.1238846

[28] Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2016. Soufflé:

On Synthesis of Program Analyzers. In Computer Aided Verification

- 28th International Conference, CAV 2016, Toronto, ON, Canada, July

17-23, 2016, Proceedings, Part II (Lecture Notes in Computer Science,

Vol. 9780), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer, 422ś

430. https://doi.org/10.1007/978-3-319-41540-6_23

[29] Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2019.

Brie: A Specialized Trie for Concurrent Datalog. In Proceedings of the

10th International Workshop on Programming Models and Applications

for Multicores and Manycores, PMAM@PPoPP 2019, Washington, DC,

USA, February 17, 2019, Quan Chen, Zhiyi Huang, and Min Si (Eds.).

ACM, 31ś40. https://doi.org/10.1145/3303084.3309490

[30] Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2019.

A specialized B-tree for concurrent datalog evaluation. In Proceedings

of the 24th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP 2019, Washington, DC, USA, February 16-

20, 2019, Jeffrey K. Hollingsworth and Idit Keidar (Eds.). ACM, 327ś339.

https://doi.org/10.1145/3293883.3295719

[31] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2020.

Specializing parallel data structures for Datalog. Concurrency and

Computation: Practice and Experience n/a, n/a (2020), e5643. https:

//doi.org/10.1002/cpe.5643

[32] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew

Pavlo, and Peter A. Boncz. 2018. Everything You Always Wanted to

Know About Compiled and Vectorized Queries But Were Afraid to

Ask. Proc. VLDB Endow. 11, 13 (2018), 2209ś2222. https://doi.org/10.

14778/3275366.3275370

[33] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive

Execution of Compiled Queries. In 34th IEEE International Conference

694

https://doi.org/10.1145/3088515.3088522
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/857076.857077
https://doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.1137/060676489
https://doi.org/10.1145/362248.362270
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1016/j.entcs.2009.11.011
https://doi.org/10.1145/1286821.1286828
https://doi.org/10.1145/1286821.1286828
https://doi.org/10.1109/69.43410
https://doi.org/10.1007/978-3-642-83952-8
https://doi.org/10.1145/360825.360849
http://www.jilp.org/vol5/v5paper12.pdf
http://www.jilp.org/vol5/v5paper12.pdf
https://doi.org/10.1145/1059579.1059583
https://doi.org/10.1002/spe.434
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya
https://github.com/python/cpython/blob/f03d318ca42578e45405717aedd4ac26ea52aaed/Python/ceval.c#L1017
https://github.com/python/cpython/blob/f03d318ca42578e45405717aedd4ac26ea52aaed/Python/ceval.c#L1017
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1238844.1238846
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/3303084.3309490
https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1002/cpe.5643
https://doi.org/10.1002/cpe.5643
https://doi.org/10.14778/3275366.3275370
https://doi.org/10.14778/3275366.3275370

An Efficient Interpreter for Datalog by De-specializing Relations PLDI ’21, June 20ś25, 2021, Virtual, Canada

on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. IEEE

Computer Society, 197ś208. https://doi.org/10.1109/ICDE.2018.00027

[34] Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis,

and Yannis Smaragdakis. 2020. Static Analysis of Shape in Tensor-

Flow Programs. In 34th European Conference on Object-Oriented Pro-

gramming, ECOOP 2020, November 15-17, 2020, Berlin, Germany (Vir-

tual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 15:1ś15:29.

https://doi.org/10.4230/LIPIcs.ECOOP.2020.15

[35] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin,

Dzintars Avots, Michael Carbin, and Christopher Unkel. 2005. Context-

sensitive program analysis as database queries. In Proceedings of the

Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, June 13-15, 2005, Baltimore, Maryland, USA, Chen

Li (Ed.). ACM, 1ś12. https://doi.org/10.1145/1065167.1065169

[36] J. W. Lloyd. 1995. Foundations I. In Logic Programming: The 1995

International Symposium. The MIT Press, 177ś177. https://doi.org/10.

7551/mitpress/4301.003.0002

[37] MagnusMadsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. FromDatalog

to flix: a declarative language for fixed points on lattices. In Proceedings

of the 37th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,

2016, Chandra Krintz and Emery Berger (Eds.). ACM, 194ś208. https:

//doi.org/10.1145/2908080.2908096

[38] FrankMcSherry, Derek GordonMurray, Rebecca Isaacs, andMichael Is-

ard. 2013. Differential Dataflow. In CIDR 2013, Sixth Biennial Conference

on Innovative Data Systems Research, Asilomar, CA, USA, January 6-9,

2013, Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2013/

Papers/CIDR13_Paper111.pdf

[39] Nagy Mostafa, Chandra Krintz, Calin Cascaval, David Edelsohn, Priya

Nagpurkar, and Peng Wu. 2010. Understanding the Potential of

Interpreter-based Optimizations for Python. (09 2010).

[40] Patrick Nappa, David Zhao, Pavle Subotic, and Bernhard Scholz. 2019.

Fast Parallel Equivalence Relations in a Datalog Compiler. In 28th In-

ternational Conference on Parallel Architectures and Compilation Tech-

niques, PACT 2019, Seattle, WA, USA, September 23-26, 2019. IEEE, 82ś96.

https://doi.org/10.1109/PACT.2019.00015

[41] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans

for Modern Hardware. Proc. VLDB Endow. 4, 9 (June 2011), 539ś550.

https://doi.org/10.14778/2002938.2002940

[42] Todd A. Proebsting. 1995. Optimizing an ANSI C Interpreter with

Superoperators. In Conference Record of POPL’95: 22nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, San Fran-

cisco, California, USA, January 23-25, 1995, Ron K. Cytron and Peter

Lee (Eds.). ACM Press, 322ś332. https://doi.org/10.1145/199448.199526

[43] Erven Rohou, Bharath Narasimha Swamy, and André Seznec. 2015.

Branch prediction and the performance of interpreters: don’t trust

folklore. In Proceedings of the 13th Annual IEEE/ACM International

Symposium on Code Generation and Optimization, CGO 2015, San Fran-

cisco, CA, USA, February 07 - 11, 2015, Kunle Olukotun, Aaron Smith,

Robert Hundt, and Jason Mars (Eds.). IEEE Computer Society, 103ś114.

https://doi.org/10.1109/CGO.2015.7054191

[44] Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Alec Wolman,

Wayne A. Wong, Jean-Loup Baer, Brian N. Bershad, and Henry M.

Levy. 1996. The Structure and Performance of Interpreters. In Proceed-

ings of the Seventh International Conference on Architectural Support

for Programming Languages and Operating Systems (Cambridge, Mas-

sachusetts, USA) (ASPLOS VII). Association for Computing Machinery,

New York, NY, USA, 150ś159. https://doi.org/10.1145/237090.237175

[45] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. In Datalog

2.0 2019 - 3rd International Workshop on the Resurgence of Datalog in

Academia and Industry co-located with the 15th International Conference

on Logic Programming and Nonmonotonic Reasoning (LPNMR 2019)

at the Philadelphia Logic Week 2019, Philadelphia, PA (USA), June 4-

5, 2019 (CEUR Workshop Proceedings, Vol. 2368), Mario Alviano and

Andreas Pieris (Eds.). CEUR-WS.org, 56ś67. http://ceur-ws.org/Vol-

2368/paper6.pdf

[46] Konstantinos Sagonas, Terrance Swift, and David Scott Warren. 1994.

XSB as an Efficient Deductive Database Engine. In Proceedings of the

1994 ACM SIGMOD International Conference on Management of Data,

Minneapolis, Minnesota, USA, May 24-27, 1994, Richard T. Snodgrass

and Marianne Winslett (Eds.). ACM Press, 442ś453. https://doi.org/

10.1145/191839.191927

[47] Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann.

2016. On fast large-scale program analysis in Datalog. In Proceed-

ings of the 25th International Conference on Compiler Construction, CC

2016, Barcelona, Spain, March 12-18, 2016, Ayal Zaks and Manuel V.

Hermenegildo (Eds.). ACM, 196ś206. https://doi.org/10.1145/2892208.

2892226

[48] Pavle Subotic, Herbert Jordan, Lijun Chang, Alan D. Fekete, and

Bernhard Scholz. 2018. Automatic Index Selection for Large-Scale

Datalog Computation. Proc. VLDB Endow. 12, 2 (2018), 141ś153.

https://doi.org/10.14778/3282495.3282500

[49] Lindholm Tim, Yellin Frank, Bracha Gilad, Buckley Alex, and Smith

Daniel. 2020. The Java Virtual Machine Specification (20 ed.). Oracle

America, 500 Oracle Parkway, Redwood City, California 94065, U.S.A.

An optional note.

[50] Jeffrey D. Ullman. 1988. Principles of Database and Knowledge-Base Sys-

tems, Volume I. Principles of computer science series, Vol. 14. Computer

Science Press. https://www.worldcat.org/oclc/310956623

[51] David HD Warren. 1983. An abstract Prolog instruction set. Technical

note 309 (1983).

[52] Jan Wielemaker. 2003. An Overview of the SWI-Prolog Programming

Environment. In Proceedings of the 13th International Workshop on

Logic Programming Environments, Tata Institute of Fundamental Re-

search, Mumbai, India, December 8, 2003 (Report, Vol. CW371), Frédéric

Mesnard and Alexander Serebrenik (Eds.). Katholieke Universiteit Leu-

ven, Department of Computer Science, Celestijnenlaan 200A, B-3001

Heverlee (Belgium), 1ś16.

[53] Jan Wielemaker, Thom Fruehwirth, Leslie De Koninck, Markus Triska,

and Marcus Uneson. 2012. SWI Prolog Reference Manual (6.2.2). BoD ś

Books on Demand, USA.

[54] David Zhao, Pavle Subotić, and Bernhard Scholz. 2020. Debugging

Large-Scale Datalog: A Scalable Provenance Evaluation Strategy. ACM

Trans. Program. Lang. Syst. 42, 2, Article 7 (April 2020), 35 pages. https:

//doi.org/10.1145/3379446

695

https://doi.org/10.1109/ICDE.2018.00027
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.1145/1065167.1065169
https://doi.org/10.7551/mitpress/4301.003.0002
https://doi.org/10.7551/mitpress/4301.003.0002
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2908080.2908096
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://doi.org/10.1109/PACT.2019.00015
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/199448.199526
https://doi.org/10.1109/CGO.2015.7054191
https://doi.org/10.1145/237090.237175
http://ceur-ws.org/Vol-2368/paper6.pdf
http://ceur-ws.org/Vol-2368/paper6.pdf
https://doi.org/10.1145/191839.191927
https://doi.org/10.1145/191839.191927
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.14778/3282495.3282500
https://www.worldcat.org/oclc/310956623
https://doi.org/10.1145/3379446
https://doi.org/10.1145/3379446

	Abstract
	1 Introduction
	2 Background
	3 An Interpreter for Soufflé
	4 Optimizations
	4.1 Static Access and Instruction Generation
	4.2 Static Tuple Reordering
	4.3 Reducing Register Pressure in Recursive Function Calls
	4.4 Super-instructions

	5 Performance Evaluation
	5.1 Overall Performance
	5.2 Performance Gap
	5.3 Static Access and Instruction Generation
	5.4 Super-instructions
	5.5 Static Reordering and Reducing Register Pressure

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

