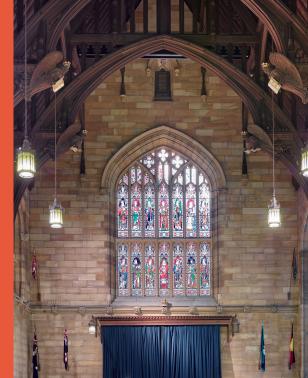
Automatic Index Selection for Inequalities

Samuel Isaac Arch

Supervisor: Bernhard Scholz



Introduction	Background	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
•	0000000000	000	00	0000	0000	0	0	0

Introduction

- Datalog is popular for its conciseness and expressiveness [1]
 - Static Program Analysis (DOOP)
 - Network Analysis (VPC)
 - Binary Disassembly (DDISASM)
- ► Competitive with hand-crafted tools at giga-scale (SOUFFLÉ) [2]
- Current evaluation of inequalities fails to meet real-world demands (DDISASM)

We present two new approaches to speed up inequalities automatically

Introduction	Background	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
0	●○○○○○○○○		00	0000	0000	0	0	0

Datalog

Declarative programming language - specify the logic of a computation using rules

```
Rules
path(x, y) :- edge(x, y).
path(x, z) :- edge(x, y), path(y, z).
```

```
Facts (Input)
edge(1, 2), edge(2, 3).
```

```
Knowledge (Output)
```

```
path(1, 2), path(2, 3), path(1, 3).
```

Evaluating Datalog with Soufflé

Logic programs are transformed into equivalent imperative programs

```
Original Rule
path(x, z) :- edge(x, y), path(y, z).
```

Transformed Rule

```
path(a, d) := edge(a, b), path(c, d), c = b.
```

Loop Nest

```
for all t_0 \in edge do
for all t_1 \in path do
if t_1(c) = t_0(b) do
if (t_0(a), t_1(d)) \notin path do
project (t_0(a), t_1(d)) into path
```

- + No need to materialise intermediate relations
- Complexity proportional to the size of the Cartesian product of involved relations

Equality Primitive Searches

An *equality primitive search* [3] is a filter operation on a Datalog relation where a subset of the relation's attributes are equal to constant values i.e.

$$\sigma_{x_1=v_1,\dots,x_k=v_k}(R) = \{t \in R \mid t(x_1) = v_1,\dots,t(x_k) = v_k\}$$

Key Idea

Hoist equality predicates on relations to make equality primitive searches

Table Scan and Filterfor all $t_0 \in edge$ dofor all $t_1 \in path$ doif $t_1(c) = t_0(b)$ doif $(t_0(a), t_1(d)) \notin path$ doproject $(t_0(a), t_1(d))$ into path

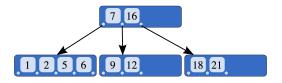
Equality Primitive Search

for all
$$t_0 \in edge$$
 do
for all $t_1 \in \sigma_{c = t_0(b)}(path)$ do
if $(t_0(a), t_1(d)) \notin path$ do
project $(t_0(a), t_1(d))$ into $path$

Introduction	Background	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
0	○○○●○○○○○○		00	0000	0000	0	0	0

Indexes

Storing logical relations in data structures called *indexes* can accelerate searches

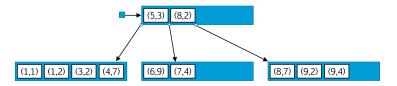


B-Trees

- + Complexity of evaluating searches is bounded by the size of the output i.e. $\mathcal{O}(\log(n) + |Q|)$
- + Tree structures provide natural opportunities for parallelism
- + Effectively exploits caches available
- Not designed to store multi-dimensional data (i.e. tuples)

Indexing Multi-Dimensional Data with B-Trees

B-Trees are uni-dimensional and require a total ordering of all tuples



Lexicographical Ordering

- Imposes a total ordering on the set of tuples by comparing attributes one at a time
- Provides support for all standard B-Tree operations
- ▶ For the above example we use the lex-order $\ell = x_1 \prec x_2$

Which B-Tree Indexes do we Build?

Selecting the right indexes is tricky

Building a Single B-Tree Index

- + Speeds up some of the searches
- Some searches may be uncovered causing dramatic performance degradation

Building Multiple B-Tree Indexes

- + Speeds up every search for a relation
- Replica indexes require maintenance

The Minimum Index Selection Problem (MISP) [3]

Given a collection of search sets S on a relation R, compute the minimum cardinality set of B-Tree indexes that cover every search.

Notation

- Search sets abstract equality primitive searches since constants are not important
- ► For example: $\sigma_{x=2, y=3, z=5} \mapsto \{x, y, z\}$

Rationale

Minimise the maintenance cost while still covering every search

Solving the MISP via Minimum Chain Covering [3]

Key Idea

How do we find an index ℓ for two searches S and S'?

An index $\ell = S \prec (S' - S)$ covers both if $S \subset S'$

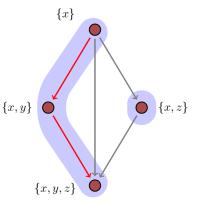
e.g.
$$\ell = x \prec y$$
 covers $S = \{x\}$ and $S' = \{x, y\}$

What if we have a chain of searches?

 $C = S_1 \subset S_2 \subset \dots \subset S_k$

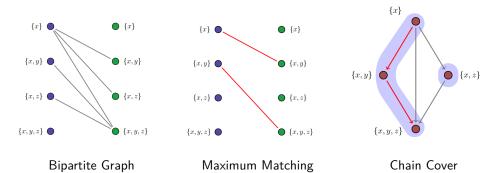
There is always an index to cover the whole chain

$$\ell = S_1 \prec (S_2 - S_1) \prec \dots \prec (S_k - S_{k-1})$$



Introduction Background	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
0 0000000	0 000	00	0000	0000	0	0	0

Minimum Chain Covering by Dilworth's Theorem



- (1) Construct a bipartite graph from $\mathcal{S} \times \mathcal{S}$
- (2) Draw an edge from S to S' if $S \subset S'$
- (3) Compute the maximum cardinality matching on the graph
- (4) Map edges from the matching to the minimum chain cover
- (5) Create indexes for each chain $\ell = S_1 \prec (S_2 S_1) \prec ... \prec (S_k S_{k-1})$

Automatic Index Selection in Soufflé

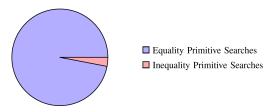
The state-of-the-art auto-index selection technique is currently deployed in ${
m SOUFFL\acute{E}}$

Summary

- + Entirely automatic (no user intervention)
- + Polynomial time index selection (negligible compilation time overhead)
- + Robust as every equality primitive search is covered by an index
- Searches with *inequalities* are not covered by an index (unacceptable performance)

Introduction	Background	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
0	0000000000	000	00	0000	0000	0	0	0

Spatial Primitive Searches



A *spatial primitive search* is a filter operation on a Datalog relation where a subset of the relation's attributes are lower bounded and/or upper bounded by constant values i.e.

$$\sigma_{l_1 \le x_1 \le u_1, \dots, l_k \le x_k \le u_k}(R) = \{ t \in R \mid l_1 \le t(x_1) \le u_1, \dots, l_k \le t(x_k) \le u_k \}$$

- ▶ An SPS is an equality primitive search when for all x_i we have $l_i = u_i$
- ▶ An SPS is an inequality primitive search otherwise
- ▶ The SPS gadget distils each Datalog operation down to its semantics

Introduction B	ackground	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
0 0	000000000	000	00	0000	0000	0	0	0

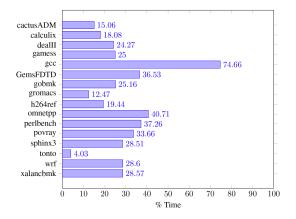
Statistics on Inequality Primitive Searches

Proportion of Program (%)

- ▶ DOOP (4.46%)
- VPC (4.9%)
- DDISASM (3.29%)

Proportion of Evaluation Time (%)

- DOOP (Less than 1.29%)
- VPC (Less than 0.01%)
- DDISASM (Up to 74.66%)



We consider rules which contain at least one inequality primitive search

How Do We Speed up Inequalities?

The only literature on inequalities in Datalog is over 8 years old [4]

Existing Technique

- Program level transformation
- Creates new "Filter Relations" that are smaller than the original relations
- ► (1) c(x) :- a(x), b(y), y < x.
- ► (2a) c(x) :- a(x), b_filtered(y), y < x.</p>
- ▶ (2b) b_filtered(y) :- b(y), y < max x : { a(x) }.</p>

DDISASM Rule (58% of Evaluation Time)

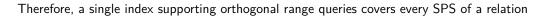
```
data_object_conflict(EA1, Size1, Type1, EA2, Size2, Type2) :-
    data_object_candidate(EA1, Size1, Type1),
    data_object_candidate(EA2, Size2, Type2),
    EA1 < EA2, EA2 < EA1 + Size1</pre>
```

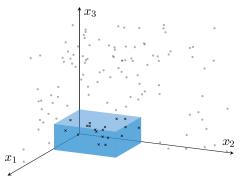
Spatial Primitive Search \longleftrightarrow Orthogonal Range Query

Orthogonal range querying is the problem of finding from a set of d-dimensional points S, a subset Q of points that lie within a specified d-dimensional box

Reduction

- Given an SPS: $\sigma_{l_1 \leq x_1 \leq u_1, \dots, l_k \leq x_k \leq u_k}(R)$
- Define the bounding box: $B = b_1 \times ... \times b_d$
- Set $b_i = [lower_i, upper_i]$
- ► If l_i is specified, lower_i = l_i otherwise lower_i = inf(D_i)
- ► If u_i is specified, upper_i = u_i otherwise upper_i = sup(D_i)
- Easy to prove that the semantics coincide



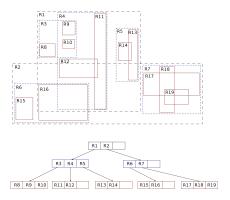


Which Index for Orthogonal Range Querying?

Datalog involves large amounts of updating indexes as new knowledge is derived

Rationale for R-Trees [5]

- Kd-Trees/Range Trees are not dynamic
- Dynamic Range Trees fail in practice [6]
- R-Trees are ubiquitous in spatial databases (MySQL, PostGIS, Oracle Spatial etc.)
- R* variant offers fast query performance (although worst case complexity is O(n))



R-Tree SPS

Use a single R-Tree index for relations with inequality primitive searches

Extending the State of the Art

The original auto-index technique with a cluster of B-Trees performs well, so why not extend it?

Problem: B-Trees are Uni-dimensional Structures

- ▶ B-Trees cannot perform range queries over more than 1 dimension
- At most 1 attribute can have an inequality constraint i.e. $l_i \neq u_i$ for some x_i
- A simple spatial primitive search is an SPS which satisfies the above condition

Single Search and Filter

for all $t_0 \in R_0$ do

••

for all
$$t_k \in \sigma_{l_1 \leq x_1 \leq u_1}(R_k)$$
 do
if $l_2 \leq x_2 \leq u_2$ and $l_3 \leq x_3 \leq u_3$ do
...
project (...) into ...

The MISP for Simple Spatial Primitive Searches

Given a collection of search set pairs $(S_{EQ}, S_{INEQ}) \in S$ satisfying $|S_{INEQ}| \leq 1$ on a relation R, compute the minimum cardinality set of B-Tree indexes that cover every search set pair.

Notation

- Pair of search sets (S_{EQ}, S_{INEQ})
- ▶ S_{EQ} contains all constrained attributes where $l_i = u_i$
- ▶ S_{INEQ} contains all constrained attributes where $l_i \neq u_i$
- $\blacktriangleright \text{ For example: } \sigma_{x=2, \ y<3, \ z=5} \mapsto (\{x,z\}, \{y\})$
- We define $S = S_{EQ} \cup S_{INEQ}$ to contain all attributes in the search

B-Tree SPS

Use the smallest possible cluster of B-Trees to cover every simple SPS

Solving the MISP via Minimum Chain Covering [3]

Key Idea

Define a new partial order over search set pairs

We write $(S_{EQ}, S_{INEQ}) < (S'_{EQ}, S'_{INEQ})$ if:

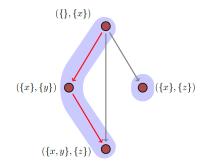
$$\begin{array}{ll} (1) & S \subseteq S' \text{ i.e. } (S_{EQ}, S_{INEQ}) \subseteq (S'_{EQ}, S'_{INEQ}) \\ (2) & \text{if } x_i \in S'_{INEQ} \text{ then } x_i \notin S \end{array}$$

For any chain of search set pairs

 $C = (S_{EQ}^1,S_{INEQ}^1) < \ldots < (S_{EQ}^k,S_{INEQ}^k)$

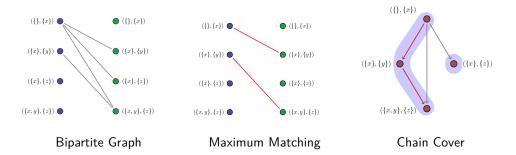
There is always an index to cover the whole chain

$$\ell = S^1 \prec (S^2 - S^1) \prec \ldots \prec (S^k - S^{k-1}) \text{ and } S^i_{EQ} \prec S^i_{INEQ}$$



Introduction Backgrou	nd Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References	
0 00000	000 000	00	0000	0000	0	0	0	

Minimum Chain Covering by Dilworth's Theorem



- (1) Construct a bipartite graph from $\mathcal{S}\times\mathcal{S}$
- (2) Draw an edge from (S_{EQ}, S_{INEQ}) to (S'_{EQ}, S'_{INEQ}) if $(S_{EQ}, S_{INEQ}) < (S'_{EQ}, S'_{INEQ})$
- (3) Compute the maximum cardinality matching on the graph
- (4) Map edges from the matching to the minimum chain cover
- (5) Create indexes for each chain $\ell = S^1 \prec (S^2 S^1) \prec ... \prec (S^k S^{k-1})$ and $S^i_{EQ} \prec S^i_{INEQ}$

Experimental Evaluation in Soufflé

We are looking to compare the performance of R-Tree SPS, B-Tree SPS and the State of the Art

Experimental Setup

- ▶ BOOST C++ R-Tree implementation for R-Tree SPS
- ▶ SOUFFLÉ B-Tree implementation for both B-Tree SPS and the State of the Art
- ▶ Real-world Datalog applications (DOOP, VPC, DDISASM) with a single thread

Key Metrics

- Compilation Time (s)
- Maximum Memory Usage (KB)
- Evaluation Time (s)

Introduction	Background	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
0	0000000000	000	00	0000	0000	0	0	0

Compilation Time

We find negligible compilation time overhead for both techniques

R-Tree SPS	B-Tree SPS
► DOOP = 5%	DOOP = No Effect
► VPC = 9%	VPC = No Effect
► DDISASM = 5%	► DDISASM = 6%

R-Tree SPS adds an overhead because of heavy template usage in BOOST

B-Tree SPS adds zero compilation time for DOOP and VPC since no extra indexes are built

B-Tree SPS adds 6% to the compilation time for DDISASM since a few extra indexes are built

Maximum Memory Usage

R-tree SPS consumes approximately $2\times$ more memory at peak

B-Tree SPS consumes less than 1% more memory at peak

R-Tree SPS	B-Tree SPS
► DOOP = 2%	DOOP = No Effect
► VPC = 9%	VPC = No Effect
• DDISASM = 137%	• DDISASM = $<1\%$

R-Tree SPS consumes more than double the memory at peak since R-Trees must store MBRs B-Tree SPS consumes zero extra memory for DOOP and VPC since no extra indexes are built B-Tree SPS consumes less than 1% extra memory for DDISASM since few extra indexes are built

Introduction	Background	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
0	0000000000	000	00	0000	0000	0	0	0

Evaluation Time

R-tree SPS dramatically slows down evaluation time for DOOP and DDISASM

B-Tree SPS dramatically speeds up evaluation time for DDISASM by up to $2.32\times$

R-Tree SPS DOOP = $8.61 \times$ to $20.55 \times$ *slower* **DOOP** =

- VPC = No Effect
- DDISASM = $2.01 \times$ to $143.63 \times$ *slower*

- DOOP = No Effect
- VPC = No Effect
- DDISASM = $1.02 \times$ to $2.32 \times$ faster

R-Tree SPS dramatically slows down evaluation since searches are $\mathcal{O}(n)$

B-Tree SPS has no effect on DOOP, VPC since there are very few inequalities

B-Tree SPS dramatically speeds up DDISASM since important inequalities are now indexed

Introduction	Background	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
0	0000000000		00	0000	0000	•	0	0

Conclusion

Developed a technique that speeds up evaluation of inequalities dramatically

B-Tree SPS vs State of the Art

- ▶ Speeds up evaluation time of vital Datalog applications by up to 2.32× (DDISASM)
- \blacktriangleright Consumes less than 1% more memory at peak
- Increases compilation time by no more than 6%
- Robust for real-world benchmarks with no practical slowdown (DOOP, VPC)
- Technique is entirely automatic and runs in polynomial time
- Demonstrates that index specialisation outperforms index generalisation (R-Tree SPS)

0 000000000 000 00 00 0000 000 0 0 0 0	Introduction	Background	Spatial Primitive Searches	R-Tree SPS	B-Tree SPS	Experiments	Conclusion	Future Work	References
	0	0000000000	000	00	0000	0000	0	•	0

Future Work

Many opportunities for future research

Future Work

- Efficient Evaluation of Min/Max Aggregates
- Improving Performance of Datalog Provenance
- Index Selection with Partial Indexes

Introduction O	n Background 0000000000	Spatial Primitive Searches	R-Tree SPS 00	B-Tree SPS 0000	Experiments 0000	Conclusion 0	Future Work 0	References ●			
Refe	rences										
	Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L Veldhuizen, and Geoffrey Washburn. (2015). Design and Implementation of the LogicBlox System, pages 1371-1382. SIGMOD '15. ACM, New York, NY, USA.										
	Herbert Jordan, Bernhard Scholz, and Pavle Subotic. (2016). Soufflé: On Synthesis of Program Analyzers, pages 422-430. Proceedings of Computer Aided Verification										
	Pavle Subotic, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard Scholz. (2018). Automatic Index Selection for Large-scale Datalog Computation, pages 141-153. Proceedings of the VLDB Endowment										
	Dario Campagna, Beata Sarna-Starosta, and Tom Schrijvers. (2012). Optimizing Inequality Joins in Datalog with Approximated Constraint Propagation, pages 108-122. International Symposium on Practical Aspects of Declarative Languages										
	Antonin Cuttma	n(1084)									

Antonin Guttman. (1984). R-trees: A Dynamic Index Structure for Spatial Searching., pages 47-57. SIGMOD 1984

Pankaj K Agarwal, Jeff Erickson, et al. (1999). Geometric Range Searching and its Relatives., pages 1-56. **Contemporary Mathematics**