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Abstract

In recent years, Datalog has surged in popularity as a domain-specific programming language for a

variety of application domains such as static program analysis, network analysis and binary disassembly.

Datalog allows the programmer to express the intended result of a computation in a declarative manner,

resulting in concise logical specifications of programs. The resurgence of Datalog in modern computer

science is primarily due to the development of high-performance Datalog engines such as SOUFFLÉ,

with the capability to deliver performance competitive with imperative programs even when billions of

tuples are involved. Crucial to the scalability of Datalog engines is their ability to accelerate the evalua-

tion of logical rules by storing relations in data structures called indexes. Until very recently, users had

to provide performance hints to Datalog engines to guide them to select certain indexes. Discovering the

best performance hints to achieve satisfactory performance was not only painstaking but required a deep

understanding of the underlying evaluation engine. To alleviate users from this burden of experimenting

with performance hints, the state-of-the-art index selection technique deployed in SOUFFLÉ automat-

ically selects the best set of indexes to accelerate Datalog rules, achieving performance on par with

hand-crafted tools, without the need for user intervention. However, there is a crucial weakness to the

state-of-the-art technique, as indexes only cover searches with equality constraints (known as equality

primitive searches). As a consequence, key Datalog applications that require fast evaluation of searches

with inequality constraints fail to meet real-world demands.

In this thesis, we introduce two new automatic index selection strategies that extend the state-of-

the-art technology to accelerate rules with inequality constraints. We propose a gadget called a spatial

primitive search, which abstracts indexable Datalog operations from the underlying choice of the index

used to evaluate them. Our first strategy evaluates spatial primitive searches with a single R-Tree index

to cover each relation. An alternate technique extends the state-of-the-art auto-index selection to cover

spatial primitive searches having inequality constraints (denoted as inequality primitive searches) with

a cluster of B-Tree indexes. We conduct experiments with industrial-strength real-world benchmarks,

including DOOP, VPC and DDISASM. For these real-world benchmarks, we demonstrate that our novel

approach incurs at most a 6% increase in compilation time and less than a 1% memory overhead while

speeding up evaluation time to be up to 2.32× faster.
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CHAPTER 1

Introduction

Logic programming languages such as Datalog have gained increasing popularity in recent years in vari-

ous application domains including program analysis (Bravenboer and Smaragdakis, 2009), data integra-

tion (Lenzerini, 2002), network analysis (Loo et al., 2006), smart contract analysis (Brent et al., 2020)

and binary disassembly (Flores-Montoya and Schulte, 2020). Logic programming provides declarative

semantics allowing the programmer to express the logic of a computation without specifying its control

flow. As a consequence, programs can be represented succinctly, without the programmer concerning

themselves with the implementation details of how the underlying program is evaluated. However, typi-

cal application domains of Datalog such as static program analysis operate at giga-scale with potentially

billions of tuples (Antoniadis et al., 2017). Thus, the ability of logic programs to perform competitively

with manually developed tools when faced with large-scale data sets is crucial.

Datalog programs are evaluated by repeated application of logical rules, deriving further knowledge

until reaching a fix-point. Logical rules are computed as a series of searches over the involved logical

relations. Searches can be accelerated by deploying high-performance data structures, called indexes, to

store the underlying logical relations. However, when searches cannot use an index, they are performed

naïvely as a scan over the entire relation and then are filtered to retrieve only tuples that satisfy the search.

Evaluating these searches without an index results in dramatic slowdowns during evaluation time, with

logic programs becoming utterly intractable to compute. Consequently, the selection of indexes is one

of the most critical factors affecting the evaluation time of logic programs. Index selection is to logic

programming as register allocation is to imperative programming. Each code generation optimisation is

crucial to ensure that data involved in computations can be retrieved swiftly.

The state-of-the-art automatic index selection algorithm (Subotić et al., 2018) deployed in the SOUFFLÉ

Datalog engine, selects the smallest set of B-Tree indexes to cover all searches over a given Datalog

relation. Minimising the number of indexes is crucial, as replicating data across multiple indexes incurs

1



1.1 CONTRIBUTIONS 2

a memory overhead and maintenance cost in the form of run-time. The technique proved to be ex-

ceptionally useful, enabling evaluation of Datalog programs with speeds competitive with hand-crafted

tools.

However, only a particular class of searches are accelerated by indexes using the state-of-the-art tech-

nique. Specifically, indexes only cover search operations with equality constraints on the relation’s

attributes, denoted as equality primitive searches. In recent years there have been vital applications of

Datalog, such as DDISASM (Flores-Montoya and Schulte, 2020), which express their semantics using

searches with inequality constraints, called inequality primitive searches. Although the presence of in-

equality primitive searches in Datalog programs is sparse, they are evaluated naïvely without an index

causing their execution to dominate the program evaluation time.

In this thesis, we introduce the notion of a spatial primitive search, to represent equality or inequal-

ity primitive searches on a Datalog relation. The concept of a spatial primitive search serves to distil

searches on Datalog relations to their semantics as filter operations without concern for the underlying

choice of the index used to evaluate them. We then propose two new automatic index selection schemes

to accelerate all spatial primitive searches in a Datalog program. The first technique, R-Tree SPS (Spatial

Primitive Search), uses a single R-Tree index for each relation to speed up inequality primitive searches

and defaults to the original index selection scheme to cover relations with exclusively equality primitive

searches. The other technique, B-Tree SPS (Spatial Primitive Search), extends the original scheme, cov-

ering all simple spatial primitive searches (i.e. spatial primitive searches with at most one attribute with

an inequality constraint) with a cluster of B-Trees.

1.1 Contributions

We present the following contributions in this thesis:

• We have formally defined the notion of a spatial primitive search, to encapsulate search opera-

tions on Datalog relations. We use spatial primitive searches as an abstract device to focus on

the automatic index selection framework without concern for the underlying choice of index.

• We have established a formal equivalence between the semantics of spatial primitive searches

and orthogonal range queries. We then implemented an R-Tree indexing strategy, R-Tree SPS,

to cover all spatial primitive searches on a relation with a single index.
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• We extended the current state-of-the-art automatic index selection scheme to speed up search

operations using inequality constraints, which we denote as B-Tree SPS. The key idea is to

define a partial ordering over simple spatial primitive searches (search operations with at most

one attribute constrained by an inequality predicate) and reuse the existing algorithmic frame-

work to find the best index selection.

• We have implemented both index selection schemes in SOUFFLÉ. The implementation required

the creation of new relational algebra transformers, implementing lower and upper bounds for

search operations on relations, modifying the index analysis scheme in the relational algebra

intermediate representation, integrating the C++ Boost R-Tree data structure into SOUFFLÉ,

and implementing attribute type comparators for synthesised data structures. The B-Tree SPS

implementation was merged across nine separate pull requests consisting of over 4000 lines of

code as an open-source contribution to SOUFFLÉ, publicly accessible here: (Samuel, 2020b).

The experimental evaluation was performed on a fork of SOUFFLÉ containing both index se-

lection implementations, which can be found here: (Samuel, 2020a).

• We have conducted extensive experiments using large scale benchmarks such as DOOP, VPC

and DDISASM. We measure the overhead concerning compilation time, maximum memory

usage and evaluation time speed-up relative to the state-of-the-art auto-index scheme. The ex-

perimental analysis showcases that B-Tree SPS increases compilation time by at most 6% and

increases peak memory usage by less than 1% while demonstrating a speed-up in evaluation

time of up to 2.32×. At the same time, B-Tree SPS is robust, showcasing no performance

degradation within the margins of experimental error for real-world Datalog applications when

compared to the state-of-the-art technique. We also compare our index selection strategy with

R-Tree SPS.

1.2 Organisation

The thesis is structured as follows: In Chapter 2, we cover related work and the state-of-the-art automatic

index selection scheme used in SOUFFLÉ. In Chapter 3, we present the theory of spatial primitive

searches, detail how to evaluate them and illustrate how to select indexes to cover them with both the

R-Tree SPS and B-Tree SPS indexing schemes. In Chapter 4, we present our experiments to determine

the feasibility of our proposed index selection techniques and discuss their results. Finally, in Chapter 5,

we form our conclusions and discuss future work.



CHAPTER 2

Background

In this chapter, we give a summary of the Datalog language, existing work in the area of index selection

in Datalog engines and the current techniques in the literature for evaluating searches with inequality

constraints in Datalog. We begin by introducing the syntax and semantics of Datalog and the evaluation

strategies used by modern Datalog engines. We then review the indexing techniques deployed in modern

Datalog engines and the state-of-the-art automatic index selection strategy used in SOUFFLÉ. Finally,

we conclude by exploring the existing work to evaluate searches with inequality constraints in Datalog.

2.1 Datalog

Datalog is a declarative programming language, and a fragment of first-order logic (Abiteboul et al.,

1995) used initially as a relational database query language. Declarative languages such as Datalog

allow the programmer to express what to compute rather than how to compute it. Datalog distinguishes

itself from other database query languages due to its expressiveness and ease of use for solving problems

in complex application domains.

2.1.1 Syntax and Semantics

A Datalog rule is a Horn clause of the form:

R0(X0) :− R1(X1), R2(X2), ..., Rn(Xn).

Each Ri is a relation and each Xi is a sequence of variables and constants matching the arity of the

relation. Each Ri(Xi) is an atom R(x1, x2, ..., xm) where each symbol xi is either a variable or a

constant.

4
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The left-hand side of the rule (R0) denotes the head, whereas the right-hand side of the rule (R1, R2, ..., Rn)

is known as the body of the rule. A concrete instance of a relation is a set of tuples where variables are

substituted with appropriate constants.

A Datalog rule has the following interpretation: If every atom in the body of a rule is true, then the head

of the rule is deduced to be true. In mathematical logic we would write:

R0 ← R1 ∧R2 ∧ ... ∧Rn

A Datalog program also consists of facts. A fact is a rule with an empty body, i.e. (R0 :− .) or (R0.)

and therefore, the head of the clause is unconditionally true. Rules and facts are both different types of

knowledge. The rules deduce further knowledge from this initial set of facts, repeatedly executing until

no new knowledge can be found.

Consider as an example the following Datalog rule:

grandparent(x, z) :− parent(x, y), parent(y, z).

We say that if parent(x, y) ∧ parent(y, z) holds then grandparent(x, z) consequently holds. Con-

cretely, if we have parent(“alice”, “bob”) and parent(“bob”, “carol”) in our set of facts, then a deduc-

tion is made from the application of the above rule to deduce a new tuple grandparent(“alice”, “carol”).

Atoms in Datalog rules can also appear negated (written as ¬A(X)). A negated atom holds when

the negated predicate, i.e. A(X) does not hold. The introduction of negation to Datalog elevates its

expressiveness but creates further complications. For example, the rule: R(X) :− ¬R(X). is not

logically sound yet is a valid rule if recursive negation is permitted. Naturally, the structure of rules

containing negation requires further restrictions in order to ensure meaningful program semantics. To

resolve this, Stratified Datalog semantics are usually adopted (Abiteboul et al., 1995).

Stratified Datalog orders relations into fixed strata and evaluates the relations from the bottom strata

upward. The relevant rules for the relations in each stratum are applied repeatedly until no new tuples

can be derived. These tuples are then passed upward into the next stratum as facts. An atom can only

appear negated in a rule if the corresponding relation appears in a lower stratum. To evaluate the truth

of a negated atom, one can perform a simple check for whether any satisfying tuples exist as facts from

lower strata.
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A precedence graph is built from the relations in a program to determine each stratum. For each rule, we

construct directed edges from relations appearing in the rule body to the relation at the head of the rule.

A topological ordering over the strongly connected components of the precedence graph then determines

the placement of relations into fixed strata.

A(x) :− B(x).

B(x) :− C(x),¬D(x).

C(x) :− A(x).

FIGURE 2.1. Datalog Rules

A

B

C

D

FIGURE 2.2. Precedence Graph

In the above example, A,B and C form a strongly connected component and D forms its own strongly

connected component. Therefore, since D precedes the other strongly connected component in the

topological ordering we place D into Stratum 0 and A,B and C into Stratum 1. Although multiple valid

stratifications can exist for a single Datalog program, the final result of the computation is always the

same (Abiteboul et al., 1995; Greco and Molinaro, 2015). If a topological ordering does not exist, then

the program is unstratified and invalid.

In Datalog, a relation (and its corresponding tuples) are either extensional or intensional. A relation

is extensional or in the extensional database (EDB) if the relation consists of only facts and no rules.

All other relations are called intensional or in the intensional database (IDB). Intuitively, tuples from

extensional relations are the "input" to the program. The Datalog program then uses the tuples in the

EDB (the facts) to produce the IDB which is analogous to the "output" of a procedural program.

2.1.2 Rule Evaluation

Datalog as a language specification does not require that any particular evaluation strategy is adopted.

As a result, different Datalog engines have adopted different evaluation strategies which are broadly

classified as either top-down or bottom-up. Bottom-up evaluation is utilised almost exclusively in mod-

ern Datalog engines including SOUFFLÉ (Jordan et al., 2016), µZ (Hoder et al., 2011) and LogicBlox
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(Aref et al., 2015) whereas top-down evaluation strategies were deployed in older engines such as XSB

(Sagonas et al., 1994).

Top-down evaluation operates by working from a query (known as the goal clause) down to the facts in

the EDB. If the goal clause resolves to facts that all exist in the EDB, the goal clause must hold.

:− A1, A2, ..., An

For each atom Ai, top down-evaluation tries to match the atom with the head of a rule. The atom in the

goal clause gets replaced by the body of the matching rule. This process, known as unification, is applied

repeatedly until facts in the EDB have entirely replaced the goal clause, or no satisfying resolution of

the query can be found.

An example of a top-down evaluation strategy is SLD resolution. The algorithm mechanically attempts

to replace each atom from left to right in the goal clause, substituting rules in the order that they appear in

the program. The algorithm continues until either a satisfying resolution is produced or all substitution

paths lead to failure.

Top-down evaluation strategies have the weakness that they tend to apply the same substitutions dur-

ing the unification process repeatedly. Tamaki and Sato (1986) improve on SLD resolution with OLD

resolution using a technique known as variant tabling, which stores previously encountered truth values

of atoms in tables for future lookup. Tekle and Liu (2011) further improve this method with subsump-

tive tabling, demonstrating that it outperforms bottom-up evaluation with the magic set transformation

(MST) applied (Ross, 1990).

Interestingly, top-down evaluation is not guaranteed to terminate as a rule such as A(X) :− A(X) will

never halt. In the process of unifying the atom A(X), it matches with the head atom of the same rule

(also A(X)) and is substituted with the same atom infinitely. Bottom-up evaluation differs in this regard

as it is guaranteed to terminate (Greco and Molinaro, 2015; Abiteboul et al., 1995).

Bottom-up evaluation occurs on an instance I of a Datalog Program P beginning with a set of facts in

the EDB and terminating with a completed IDB. It operates in successive iterations, with each iteration

deriving tuples satisfying bodies in any of the rules (formally this is the application of the immediate

consequence operator ΓP to I) and adding them into the IDB. The evaluation terminates when a fix-

point occurs, and no more IDB tuples are derived. Due to the ease of implementation, Bancilhon and

Ramakrishnan (1989) explain that this naïve evaluation is the most discussed in the literature. However,
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naïve bottom-up evaluation tends to result in the production of tuples that already exist within the IDB,

resulting in large amounts of redundant computation. Consider the following naïve evaluation of a

Datalog program:

edge(a, b), edge(b, c).

edge(c, c), edge(c, d).

path(x, y) :− edge(x, y).

path(x, y) :− edge(x, z), path(z, y).

FIGURE 2.3. Datalog Program

(1) : ∅
(2) : {(a, b), (b, c), (c, c), (c, d)}
(3) : {(a, b), (b, c), (c, c), (c, d), (a, c), (b, d)}
(4) : {(a, b), (b, c), (c, c), (c, d), (a, c), (b, d), (a, d)}

FIGURE 2.4. Tuples Produced in each Iteration

In the above evaluation, we consider the state of the path relation in the IDB on each iteration of the

naïve algorithm. Initially, there are no IDB tuples for path. After the first iteration, we have produced

corresponding IDB tuples for each edge fact. On subsequent iterations, since every rule is applied to the

existing EDB and IDB, all of the tuples discovered in iteration (2) are rediscovered and then discarded.

Deriving duplicate tuples is the primary weakness of the naïve evaluation strategy as the entire EDB and

IDB gets passed as input for each subsequent iteration.

This weakness of the naïve algorithm was recognised by Bancilhon (1986) who substantially improved

on it with the introduction of semi-naïve evaluation. The critical insight of semi-naïve evaluation is to

use delta relations to store new knowledge in the IDB, passing only new knowledge forward in each

iteration of the evaluation. Semi-naïve evaluation has much more robust performance guarantees than

the naïve evaluation strategy, ensuring that for any particular tuple, it will only be derived in the same

way exactly once.

Despite neither bottom-up nor top-down evaluation for a given program P being decidedly faster than

another (Bancilhon and Ramakrishnan, 1989), Ullman (1989) proved a fundamental result about the

semi-naïve evaluation strategy. Ullman demonstrated that for a given Datalog program P , it can always

be transformed into a semantically equivalent program P ′ with a guarantee on the number of rule firings.

In particular, when executing P ′ with a semi-naïve evaluation strategy, the number of rule firings is never

more than that of evaluating the original program P using a top-down evaluation strategy. Effectively, as

long as the original program P is optimised appropriately through program transformation techniques

such as the Magic Set Transformation, semi-naïve evaluation is the optimal strategy. For these reasons,

semi-naïve evaluation is the chosen strategy for nearly all modern Datalog engines.
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2.2 Indexing Relations in Datalog Engines

In recent years, Datalog engines such as BDDBDDB , LogicBlox and SOUFFLÉ have been developed to

execute Datalog programs efficiently using semi-naïve evaluation. These engines translate a given logic

program into an equivalent imperative program, taking advantage of modern computer architectures

to achieve high performance. Although, significant performance gains can be achieve with source-

level program transformations such as the Magic Set Transformation (Ullman, 1989), the underlying

evaluation of logical rules is most crucial to achieving performance on-par with hand-crafted imperative

programs.

To translate a Datalog program into an equivalent imperative program, modern Datalog engines unroll

each logical rule into a loop nest over the relations involved in the rule. It is worthwhile to note that al-

though a Datalog rule can unroll into multiple valid loop-nests, the result of the computation will remain

the same as the relational algebra of each order is equivalent (Chaudhuri, 1998).

Rk+1(xk+1) :− R1(x1), ..., Rk(xk).

Datalog Rule

for all t1 ∈ R1 do
...

for all tk ∈ Rk do
if p1(t1) do

...
if pk(tk) do

if (...) /∈ Rk+1 do
project (...) into Rk+1

Corresponding Loop-nest Where pi(ti) is an Equality
Predicate on Tuple ti.

The above figure showcases a naïve translation of a Datalog rule to a corresponding imperative loop

nest. The advantage of the loop-nest is that no intermediate results are materialised and instead each

element of the Cartesian product of the involved relations is iterated through as it is needed. However,

the performance of the loop nest is its greatest weakness.

For each loop in the loop nest, a table scan is performed on the relation with time complexity ofO(|Ri|).

Therefore, the overall complexity of the loop-nest isO(
∏
i
|Ri|), excluding the time to project any tuples

into the relation appearing in the head of the rule. Since the sizes of these relations are typically very

large in real-world Datalog applications, evaluating logic programs using this naïve approach becomes

completely intractable.
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However, instead of generating the Cartesian product over all relations and then filtering on the cor-

responding predicates lower in the loop nest, these predicates can be hoisted into equality primitive

searches on the relations. Equality primitive searches are search operations on relations where some

subset of the relation’s attribute have equality predicates.

for all t1 ∈ R1 on index p1(t1)do
...

for all tk ∈ Rk on index pk(tk)do
if (...) /∈ Rk+1 do

project (...) into Rk+1

FIGURE 2.5. Indexed Loop-nest from Datalog rule.

Figure 2.5 illustrates the transformed loop nest where table scan and filter operations are combined to

form equality primitive searches. We note that predicates can only be hoisted up into table scans to form

equality primitive searches when values in the predicate are constants or are determined by variables

at higher levels of the loop nest. For each of the equality primitive searches in the loop nest, an index

can accelerate the evaluation. In particular, if using an index such as a B-Tree, the data structure can

be queried for the tuples satisfying the search predicate with a complexity of O(log(n) + |Q|) where Q

is the set of tuples satisfying the range query. By evaluating searches with an index, each loop reduces

in complexity from being proportional to the size of the relation to being proportional to the size of the

output. Since |Q| is typically significantly smaller than n, evaluating equality primitive searches with

indexes is crucial to the high-performance evaluation of logic programs. The choice of index to store

logical relations is, therefore, the most crucial factor for modern Datalog engines to cope with giga-scale

data common in many application domains (Jordan et al., 2016).

We now shift focus to the index selection strategies deployed in modern Datalog engines.

2.2.1 BDDBDDB

The first scalable, context-sensitive, inclusion-based, pointer alias analysis for Java programs in Datalog

became feasible with the BDDBDDB Datalog engine (Whaley et al., 2005). Previously, these large

scale context-sensitive analyses were completely intractable as the analysis operated on call graphs with

as many as 1014 acyclic paths (Whaley and Lam, 2004). Storing these paths explicitly in logical relations

would quickly exceed the available system memory of modern machines. The choice of binary decision

diagrams (BDDs) (Akers, 1978) as an index for logical relations allows tuples to be stored implicitly
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as compressed truth tables making the analysis tractable. BDDs as an index for logical relations are

not without fault, however. Bravenboer and Smaragdakis (2009) suggests that BDDs are not the most

suitable representation for fast and precise context-sensitive analysis. The authors note that the overall

performance of the analysis is highly sensitive to the variable ordering chosen for large BDDs, noting

that the problem of finding an optimal variable ordering for a single BDD is an NP-Hard problem (Meinel

and Theobald, 2012). Therefore, extensive experimentation with different variable orderings is required

to achieve satisfactory performance (Berndl et al., 2003).

2.2.2 LogicBlox

LogicBlox (Aref et al., 2015) is a more recent Datalog engine, designed to reduce the inherent complex-

ity in developing modern enterprise applications (Green et al., 2012). LogicBlox is not specialised for

any specific application domain. Therefore the designers opt for a more general Trie (Fredkin, 1960)

data structure with the intent to provide fast performance in a variety of application contexts. Despite,

LogicBlox lacking specialisation for program analysis, it has outperformed BDDBDDB due to its high

performance as an evaluation engine (Bravenboer and Smaragdakis, 2009). Tries, much like BDDs, need

not store the data of logical relations explicitly, with shared prefixes of tuples stored only once. Figure

2.6 demonstrates the motivation for a Trie index, with a high level of information density achievable

when many tuples have shared prefixes relative to the variable order of the relation. LogicBlox stores

each relation in a single Trie index in the same variable order that the relation uses, which need not have

many shared prefixes among tuples.

FIGURE 2.6. Trie Representation of a Ternary Predicate (Aref et al., 2015)
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Furthermore, a novel join algorithm, the Leapfrog Trie Join (LFTJ) (Veldhuizen, 2012) is employed to

provide efficient searches on indexes. When searching an index on a prefix of the variable order, only

the direct children of the relevant sub-tree need to be visited. However, in other cases, the search per-

formance can be abysmal. The worst performance occurs when searching on the last attribute in the

relation’s variable order, requiring iteration over the entire index to find all of the satisfying tuples. The

performance of LogicBlox is highly sensitive to the variable order, not only with regards to the infor-

mation density achievable within relations but also the time complexity of search operations across in-

dexes. DOOP (Bravenboer and Smaragdakis, 2009), a popular framework for points-to analysis in Java,

was first implemented in LogicBlox. The performance of DOOP crucially relied on a code-rewriting

technique (Antoniadis et al., 2017), whereby relations were rewritten with different variable orderings,

replicating a relation multiple times to optimise the performance of searches. The choice of variable

orderings for each relation and which relations to duplicate required not only extensive manual human

time and effort but deep familiarity with the underlying implementation of the Datalog engine.

2.2.3 SOUFFLÉ

SOUFFLÉ (Jordan et al., 2016) represents the state of the art in Datalog engine technology, initially de-

veloped in Oracle Labs Brisbane for program analysis of the OpenJDK. SOUFFLÉ was invented to fulfil

the need to execute Datalog programs at speeds competitive with manually optimised imperative tools.

Other Datalog engines lacked this ability to specialise for a specific program instance. SOUFFLÉ meets

this demand by employing novel specialisation techniques through the use of Futumura projections (Fu-

tamura, 1999) to translate a given Datalog program into a highly efficient parallel C++ program. First,

the Datalog program is parsed to an Abstract Syntax Tree (AST) where high level optimisations are

performed. Next, the AST is converted to relational algebra operations to be performed on an abstract

machine (known as the Relational Algebra Machine or RAM). In this format, mid-level optimisations

are performed. After this, the RAM representation is converted to high performance concurrent C++

that executes relational algebra operations. Finally, this C++ code is compiled into a binary, using the

powerful optimisation capabilities of modern C++ compilers such as GCC and Clang.
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FIGURE 2.7. SOUFFLÉ’s Compilation Pipeline (Scholz et al., 2016)

Unlike other Datalog engines which employ a single fixed data structure to index every relation, SOUF-

FLÉ supports a portfolio of different data structures depending on the workload (Jordan et al., 2020).

The choice from different indexes is made available due to the fact the each of the highly specialised

concurrent data structures deployed in SOUFFLÉ conform to a uniform interface. The default data struc-

ture within the engine is a highly optimised concurrent B-Tree (Jordan et al., 2019b) achieving up to

3× faster Datalog evaluation performance than industry standard concurrent set implementations. For

workloads with large volumes of data, a custom high-performance cache-friendly trie data structure spe-

cialised for concurrent Datalog is deployed (Jordan et al., 2019a). When used in a points-to analysis, it

offers an impressive 4× improvement over SOUFFLÉ’s B-Tree, due to its ability to more densely repre-

sent a relation’s tuples. Finally, a high-performance parallel union-find data structure known as EQREL

(Nappa et al., 2019) is utilised for efficiently evaluating equivalence relations.

The most important distinction, however, between SOUFFLÉ and other Datalog engines is that SOUFFLÉ

automatically selects a minimal set of indexes that cover every equality primitive search for relations in a

given Datalog program. The technique frees the programmer from considerable human effort spent man-

ually rewriting relations to achieve satisfactory performance. We note that the index selection technique

is applied given a fixed loop schedule. Given that the scheduling of loops can influence performance

dramatically, this is not ideal as users still need to manually find the best loop schedules to achieve sat-

isfactory performance. However, this choice was made by Subotić et al. (2018) since manual tuning of

loop schedules is significantly less time consuming than finding a satisfying index selection.



2.3 INDEXING EQUALITY PRIMITIVE SEARCHES IN DATALOG 14

2.3 Indexing Equality Primitive Searches in Datalog

A variety of indexes can accelerate the evaluation of equality primitive searches such as hash indexes,

multi-dimensional indexes of binary search tree indexes. However, the state-of-the-art auto-index se-

lection strategy deployed in SOUFFLÉ has opted to use B-Tree indexes to speed up equality primitive

searches. We review their formal definition of equality primitive searches and their rationale for selecting

B-Tree indexes.

2.3.1 Equality Primitive Searches

Subotić et al. (2018) define the preliminaries. Firstly, a relation R is defined to be a subset of an m-ary

Cartesian product D = {D1 × ...Dm} where Di are the domains of each relation. Elements of relations

are called tuples. A tuple ti = 〈e1, e2, ..., em〉 ∈ R has a fixed arity m, where ei ∈ Di for 1 ≤ i ≤ m.

For a relation R it’s attributes AR = {x1, x2, ..., xm} refer to specific positions of elements within its

tuples. R(x1, x2, ..., xm) is written to associate symbol xi with position i in the tuple. Finally, t(xi) is

an access function that maps an attribute xi to the concrete value of a tuple t at position i.

For example, if we have a binary relation R where D1 = {x ∈ Z | 0 ≤ x ≤ 232 − 1}, D2 = {y ∈

Z | −231 + 1 ≤ x ≤ 231} then t = 〈3,−4〉 would be a valid tuple since t(x1) = 3 ∈ D1 and

t(x2) = −4 ∈ D2. A domain Di in Datalog is helpful because it allows us to define the range of values

that are attainable by an element ei given the type of the attribute.

An equality primitive search is of the following form:

σx1=v1,...,xk=vk(Ri) = {t ∈ Ri | t(x1) = v1, ..., t(xk) = vk}.

Ri denotes a given relation, x1, x2, ..., xk are attributes of the relation Ri and x1 = v1, x2 = v2, ..., xk =

vk denote search predicates where v1, v2, ..., vk are constants.

It is worth noting that the attributes that appear in a search predicate do not have to be the first k in the

relation. Instead, any of the attributes x ∈ AR may appear on the left hand side of search predicates.

Additionally, the values v1, v2, ..., vk can be constants from t or may appear in tuples that appear above

the current tuple in the loop nest.
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2.3.2 Hash Indexes

When deciding on an index to speed up these equality primitive searches, there is a wealth of options.

An obvious choice would be to use a hash index due to their ubiquity in SQL databases (Blanas et al.,

2011). However, Subotić et al. (2018) found these hash indexes to not be very competitive for a few

reasons. Hash-based data structures such as Google’s sparse hash-map were found to not perform as

well as B-Trees. The authors cite a poor trade-off of time to perform searches and memory usage as well

as a failure to parallelise computation across multiple machine cores. A hash-index also has a significant

weakness in that multiple hash indexes are needed to cover every search with an index. For example,

if there are |S| distinct equality primitive searches where each search contains a unique set of attributes

in the search predicate, |S| hash indexes must be constructed to cover them all. For each hash index

built for the relation, tuples need to be inserted into all hash indexes for their states to be kept consistent.

Therefore, not only are hash indexes too slow and hard to parallelise, but their memory usage becomes

excessive for real-world Datalog programs.

2.3.3 R-Tree Indexes

Subotić et al. (2018) remark that a multi-dimensional index such as an R-Tree (Guttman, 1984) would

cover all equality primitive searches in a Datalog program with a single index. In other words, a single

R-Tree index for a given relation would cover all |S| equality primitive searches eliminating the need for

replication of database tuples. Unlike hash-maps, R-Tree variants exist that effectively exploit multi-core

architectures (Kamel and Faloutsos, 1992). R-trees also tend to perform quite well in practice (Hwang

et al., 2003), however, performance is highly sensitive to the distribution of values and the order they

are inserted (Beckmann et al., 1990). In the worst case, the query complexity is O(n) where n is the

size of the relation i.e. every tuple is visited. Only when the data is well organised in the R-Tree does

the query performance become competitive. The authors did not evaluate the performance of R-tree

indexes, despite the ability of a single R-Tree index to cover all equality primitive searches of a relation.

2.3.4 B-Tree Indexes

Subotić et al. (2018) ultimately opted to use a B-Tree index to cover equality primitive searches. Al-

though multiple B-Tree indexes may be required to speed up all equality primitive searches for a relation,

they provide strong guarantees on the query complexity. In particular, B-Trees exhibit O(log(n) + |Q|)
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worst case query performance where Q is the set of tuples satisfying the search. In other words, the query

complexity is proportional to the size of the output. Therefore, when the size of the relation is large and

the number of tuples satisfying the search is small, B-Tree indexes offer very strong performance.

Unlike a multidimensional index such as an R-Tree which stores each attribute of a multi-dimensional

tuple as it’s own coordinate in n-dimensional space, each tuple is compared by it’s position in a total or-

dering. A comparison scheme is employed to compare each of these multi-dimensional tuples, enabling

a traditionally uni-dimensional index such as a B-Tree to handle multi-dimensional data.

FIGURE 2.8. Lexicographical Ordering of Two-dimensional Tuples with ` = x1 ≺ x2

The authors employ a lexicographical ordering to compare tuples for a given index, by considering a

total ordering over the attributes. ` = x1 ≺ x2 ≺ ... ≺ xm defines an attribute sequence which specifies

the order that attributes are considered in when comparing between tuples. Two tuples are compared

first by the value of the attribute x1, terminating at this point if either value is larger. However, if their

x1 values are equal then their x2 values are compared, continuing in this fashion until one attribute value

is found to be larger than the other, or all attribute values coincide, and the tuples are considered to be

equal. Figure 2.8 illustrates how a total ordering can be constructed over a set of two-dimensional tuples.
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FIGURE 2.9. B-Tree Index with Lexicographical Ordering ` = x1 ≺ x2

Using ` to order all attributes in a relation, v` D × D denotes a total order over the domain D of a

relation for `. Given two tuples a, b ∈ D, when (a, b) ∈ v` D ×D we say that a is less than b or more

concisely a v` b. Since the tuples form a total order for the lex-order chosen, it is possible for only one

of a v` b or b v` a to be true. By building a B-Tree index for a given `, the index can cover a subset

of the equality primitive searches. Figure 2.9 illustrates how B-Tree indexes can be constructed given a

lexicographical ordering `.

When multiple indexes are needed to cover a collection of equality primitive searches, multiple lex-

orders can be defined, with a B-Tree index built for each order. Subotić et al. (2018) use high-performance

B-Tree indexes for their high parallelism and excellent trade-off of memory and speed. However, any

uni-dimensional index with operational support for range queries would also be able to cover the same

set of equality primitive searches.

2.3.5 Equality Primitive Search to Lex Search

To evaluate equality primitive searches with B-Tree indexes, Subotić et al. (2018) define the notion of a

lex search. A lex-search is a range query on a uni-dimensional index. The authors detail how equality

primitive searches can be translated to equivalent lex searches and which lex-orders can be used to cover

certain equality primitive searches. A lex-search σρ(`,a,b) for a given relation R ⊆ D has semantics:

σρ(`,a,b)(R) = {t ∈ R | a v` t v` b}

We denote ρ(`, a, b) as a lex search predicate, ` as an index on R, a and b as lower and upper bounds to

the search as tuples inD. A range query can be evaluated by a lex-search by finding the lower and upper

bounds a and b in the index and then iterating through all tuples between these bounds.
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Given an equality primitive search σx1=v1,...,xk=vk , Subotić et al. (2018) translate it into an equivalent

lex-search σρ(`,a,b) by finding a, b and ` for a relation R of m attributes. Trivially, if k = m then all

attributes are defined in the search predicate and we set a = b = 〈v1, ..., vm〉. For searches where some

attributes are not specified in the search predicate then infima and suprema values are used to pad a and

b respectively.

Specifically, Subotić et al. (2018) define an index mapping function from the index of an attribute of the

relation to the index of the corresponding constrained attribute:

i : {1, ...,m} → {1, ..., k + 1}

If an attribute has a constraint in the search predicate, then it will map to itself. Otherwise, it will map

to index k + 1. vk+1 is defined to be ∆, an artificial value used to represent an unspecified value where

∆ does not belong to any given domain Di. The constant ∆ signifies that the value requires padding.

When padding ∆, the value will become an infimum in the lower bound or a supremum in the upper

bound.

When constructing the bounds a = lb(v1, ..., vk) = 〈v′1, ..., v′k〉 where:

v′j =

 vij , if vij 6= ∆

inf(Dj), otherwise


and b = ub(v1, ..., vk) = 〈v′′1 , ..., v′′k〉 where:

v′′j =

 vij , if vij 6= ∆

sup(Dj), otherwise


2.3.6 Covering Primitive Searches with Lex Searches

After establishing how to construct a and b given an equality primitive search, Subotić et al. (2018) then

classify which indexes ` can cover the equality primitive search. The kth-prefix of an attribute sequence

is formalised by the definition of a prefix set. For an attribute sequence (an index) ` = x1 ≺ x2 ≺ ... ≺

xm, the kth-prefix is {x1, x2, ..., xk} if k ≤ m and {x1, x2, ..., xm} otherwise. Subotić et al. (2018)

prove that given a = lb(v1, ..., vk), b = ub(v1, ..., vk) and ` has a kth-prefix {x1, ..., xk} then for all

R ⊆ D:

σx1=v1,...,xk=vk(R) = σρ(`,a,b)(R)
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.

In effect, an equality primitive search can be covered by an index when its kth-prefix coincides with the

set of constrained attributes in the equality primitive search. Intuitively, we only need a kth-prefix of the

index to match the equality primitive search since the ordering of attributes that are not in the search are

irrelevant.

For example, consider a relation R(x, y) = {〈2, 2〉, 〈2, 3〉, 〈3, 2〉} and the equality primitive search

σx=2(R). We know from the above result that the equality primitive search can be converted to a lex-

search if {x} is a kth-prefix of `. This leaves us with only two choices for an index: ` = x or ` = x ≺ y

to speed up the equality primitive search. In fact, it is easy to show that the remaining indexes y ≺ x

and y would not speed up this equality primitive search. Take for example ` = y ≺ x where there is

no kth-prefix of ` that contains all the constrained attributes in the equality primitive search. R(x, y) =

{〈2, 2〉, 〈3, 2〉, 〈2, 3〉} shows the ordering of the tuples when using this lex-order. However, with this lex-

order the first and third tuples satisfy the equality primitive search σx=2(R) = {〈2, 2〉, 〈2, 3〉}. Thus no

lex-search with bounds a and b can be constructed to capture the entire range of satisfying tuples. Given

this, Subotić et al. (2018) strengthen the statement about which indexes can cover equality primitive

searches: An index ` covers an equality primitive search σx1=v1,...,xk=vk(R) for all R ⊆ D if and only

if it is a kth-prefix of `.

Given these restrictions on which indexes may cover equality primitive searches, it can frequently be

the case that multiple indexes are required to cover every search for a relation. The disadvantage is

that maintaining extra indexes incurs a memory overhead and evaluation time overhead as for every

insertion or deletion operation on the relation, every index must be updated to keep their states consistent.

However, all equality primitive searches must be covered by an index or the evaluation performance

degrades dramatically as searches are evaluated naïvely as table scan and filter operations. Therefore,

a problem of great interest is to determine the minimum cardinality index selection which still covers

every equality primitive search.
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2.3.7 Minimum Index Selection Problem (MISP)

The Minimum Index Selection Problem (MISP). Given a set of searches S where S ∈ S is the set of

attributes appearing in the search predicate of an equality primitive search on a relation R, the minimum

index selection problem is to find the minimum cardinality set of uni-dimensional indexes L such that

the index set covers all searches (Subotić et al., 2018).

We note that the problem formulation uses the notion of a search set rather than an equality primitive

search itself. Each equality primitive search maps to the set of constrained attributes in the search since

the constant values in the predicate are unimportant i.e. σx=2,y=3,z=5 7→ {x, y, z}. Subotić et al. (2018)

prove that a brute-force approach to solving the MISP would have a time complexity of O(2mm
) where

m is the arity (the number of attributes) of the relation R. They propose a polynomial time algorithm

to solve the MISP instead via a reduction to another problem, the Minimum Chain Covering Problem

(MCCP).

The Minimum Chain Covering Problem (MCCP). Given a set of searches S where S ∈ S is the set of

attributes appearing in the search predicate of an equality primitive search on a relation R, the minimum

chain covering problem is to find the minimum cardinality set of search chains C where C ∈ C where

C = S1 ⊂ S2 ⊂ ...Sk such that the set of search chains covers all searches (Subotić et al., 2018).

The key idea in the reduction by Subotić et al. (2018) is establishing a one-to-one correspondence be-

tween indexes and search chains. At a high level, since a search chain is comprised of a set of searches

that are all subsets of each other then by definition, the kth-prefixes of ` = S1 ≺ (S2−S1) ≺ (S3−S2) ≺

... ≺ (Sk − Sk−1) all coincide with the search sets to be covered. To prove the claim in the other direc-

tion, any index ` = S1 ≺ (S2 − S1) ≺ (S3 − S2) ≺ ... ≺ (Sk − Sk−1) that covers the set of searches

maps directly to the search chain C = S1 ⊂ S2 ⊂ ...Sk, proving the equivalence.

Therefore, the only task left is solving the corresponding MCCP which (Subotić et al., 2018) solve using

Dilworth’s theorem. Dilworth’s theorem (Dilworth, 2009) states that the number of chains required

for a minimum chain covering over an associated lattice is equal to the cardinality of the largest anti-

chain (a set of elements in the lattice such that no two elements in the set are comparable). Although,

Dilworth’s theorem does not provide an algorithm to solve for a minimum chain cover directly, others

have since developed algorithms that solve for a minimum chain cover in polynomial time (Fulkerson,

1956). Specifically, by solving an associated maximum matching problem on a bipartite graph, the

minimum chain cover can be computed. The algorithms used by Subotić et al. (2018) are below:
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Algorithm 1 MinChainCover (S)
Input : A set S of searches
Output : A minimum chain cover C of S

M←MaximumMatching (S,S, {(S, S′) ∈ S × S | S ⊂ S′})
Initialize C to be the empty set
for all u1 ∈ S s.t. 6 ∃(u0, u1) ∈M do-

Find maximal path (u1, u2), (u2, u3), . . . , (uk−1, uk) ⊆M
Add u1 ⊂ u2 ⊂ u3 ⊂ · · · ⊂ uk−1 ⊂ uk to C

return C

Firstly, all equality primitive searches are converted to search sets. Next, a minimum chain cover is

computed over the search sets by computing the maximum cardinality matching over the bipartite graph.

Each of the maximal paths in the maximum matching corresponds to a chain in the minimum chain

covering on the lattice. The construction of the bipartite graph takes O(|S|2 ·m) since for each pair of

searches, it needs to be computed whether one search is a subset of the other. The complexity of the

bipartite matching is O(|S|2.5).

Algorithm 2 MinIndex (S)
Input : A set S of search pairs
Output : A minimum set L of indexes to cover S

C ← MinChainCover(S)
Initialize L to be the empty set
for all S1 ⊂ S2 ⊂ · · · ⊂ Sk−1 ⊂ Sk ∈ C do-

Add to L an arbitrary index conforming with
S1 ≺ (S2 − S1) ≺ . . . ≺ (Sk − Sk−1)

return L

Next once the minimum chain cover is computed, each chain is transformed into a correspond index

that covers the same set of searches. After transforming all chains to indexes, the index set is returned.

Overall, transforming the chains to indexes is O(|S| ·m). Therefore, the overall time complexity of the

index selection technique is O(|S|2 ·m+ |S|2.5).
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The above figure illustrates the process of solving the minimum chain covering problem:

(1) A bipartite graph is constructed from the Cartesian product of the search sets, drawing an edge

from a node in the left bi-partition to a node in the right bi-partition if it is a proper subset.

(2) A maximum cardinality matching is computed over the associated bipartite graph.

(3) The paths in the maximum matching are mapped back to search chains in the lattice.

Although, it isn’t shown in the diagram, this instance would results in the index set L = {`1, `2} where

`1 = x ≺ y ≺ z and either `2 = x ≺ z or `2 = z ≺ x. Therefore for this instance, 4 searches can be

covered by only 2 B-Tree indexes using lex-orders `1 and `2.

2.3.8 Implementation in SOUFFLÉ

FIGURE 2.10. Transformation Pipeline of SOUFFLÉ (Scholz et al., 2016)

SOUFFLÉ has integrated this state-of-the-art index selection technique with great benefit. Figure 2.10

details the transformation process within the Datalog engine. After transforming the program from Dat-

alog to AST to RAM, an analysis is performed on all loop nests, collecting equality primitive searches
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for each relation. Search sets are built from these searches and passed as input to the index selection

algorithm. The code generation step from RAM to C++ builds the appropriate indexes according to the

output of the index selection algorithm.

When evaluated using real-world applications, the technique proved to be very successful, evaluating

programs up to 2× faster and using up to 6× less memory compared to existing index selection strate-

gies. Furthermore, the increase in compilation time as a result of the index selection algorithm was

negligible, contributing less than 1% to the overall compilation time (Subotić et al., 2018). Overall,

for equality primitive searches the state-of-the-art technique elevates Datalog evaluation to a whole new

level, achieving performance on-par and sometimes even surpassing the performance of hand-crafted

programs (Subotić et al., 2018). However, the technique has a crucial limitation that indexes are con-

structed only to cover equality primitive searches. For searches with inequality constraints i.e. inequality

primitive searches, they are evaluated without an index, heavily degrading the evaluation time of Datalog

programs.

2.4 Inequality Primitive Searches in Datalog Engines

We now review the existing work to efficiently evaluate inequality primitive searches in Datalog. Cam-

pagna et al. (2012) outline a program rewriting transformation used to speed up inequality primitive

searches, evaluating the merits of their transformation in the popular LogicBlox engine. Their tech-

nique is a source-to-source transformation that borrows ideas from constraint programming. They use a

technique known as constraint propagators, to filter relations appearing in multi-way loop-nests.

Instead of evaluating the loop-nest by naïvely generating the Cartesian product of all involved relations

and filtering on the inequality predicates, inequality predicates prune the relation before the product is

enumerated. Extra relations denoted as filter relations are substituted in place of the original relations

when using inequality constraints on the relation within the rule. Each filter relation is a duplicate of

the original, applying the inequality constraints on the filter relation. In the ideal case, filter relations

will be much smaller than the original relation, pruning the relation when inequality predicates are

very selective. When the rules fire, these filter relations appear in the Cartesian product, which may

significantly prune the search space.

When filtering over relations, inequality predicates may use values from attributes of other relations in

the rule. In the filter relation, these values are not made available, and instead, the relation uses the
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extreme values of the abstract domain of the relevant attribute. An aggregate query for the minimum

and maximum values of the relevant attributes are computed and used to replace the lower and upper

bounds of an inequality constraint, respectively. In effect, by considering only the infima and suprema

values in the abstract domain, the computation of each filter relation will never exceed O(n) time to

compute where n is the size of the relation as the Cartesian product is computed in the original rule.

a(x, y) :− b(x),

c(y),

y < x.

FIGURE 2.11. Naive Loop Nest

c_filtered(y) :− highest_b = max x : b(x) ,

c(y),

y < highest_b.

FIGURE 2.12. Filter Relation
on c to Prune Search Space

a(x, y) :− b(x),

c_filtered(y),
y < x.

FIGURE 2.13. Transformed
Loop Nest with Filter Relation

The above figure illustrates the transformation technique. In the naïve inequality join, the Cartesian

product of b and c is enumerated and then filtered for the values satisfying the inequality predicate. In

the transformed program, a filter relation for c is materialised, which filters the relation c for values that

are smaller than the maximum value of b. If c contains many values that are larger than b’s maximum

value, then this will filter the relation significantly. Then when evaluating the rule, the filtered rela-

tion c_filtered replaces c, reducing the size of the Cartesian product with b. Note that the inequality

constraint is still present in the rule even after replacing relations with their filtered counterparts. The

constraint is kept because filtering using extreme values of the abstract domain does not guarantee that

it will satisfy the original inequality predicate. Overall, this technique only helps to prune the search

space but cannot guarantee speedups in the general case as the filter relations may not reduce the size of

the relation much or at all.

The transformation above only demonstrates the procedure for non-recursive rules. The authors employ

an approximation technique when dealing with recursive rules in order to avoid unstratified aggregation.

The lower and upper bounds are approximated, using the deriving rule bodies for the relation, avoiding

aggregation on the relation directly.
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The technique demonstrates substantial speedups of up to 8× for synthesised benchmarks however it is

not suited for workloads typical of modern Datalog engines. Modern application domains of Datalog

such as static program analysis and security analysis rely on the fast evaluation of large numbers of

mutually recursive rules (Subotić et al., 2018). Therefore rough approximations would have to be used

that would fail to prune the search space of relations significantly.

// Range Conflict

data_object_conflict(EA1, Size1, T ype1, EA2, Size2, T ype2) :−
data_object_candidate(EA1, Size1, T ype1),

data_object_candidate(EA2, Size2, T ype2),

EA2 > EA1,

EA2 < EA1 + Size1.

FIGURE 2.14. Most Time Consuming Datalog Rule in DDISASM

Consider, for example, the above Datalog rule in DDISASM, consuming as much as 58% of the total

evaluation time. DDISASM represents a typical application for modern Datalog engines which rely

heavily on searches with inequality primitive searches. Since both atoms in the rule refer to the same

relation, the abstract domain of each atom is the same. Since the technique relies on using the abstract

domain of atoms earlier in the rule to prune the search space, no pruning will occur in the filter relation,

and the technique will not speed up this rule at all. Furthermore, since the technique requires building

filter relations, the performance will degrade as maintenance must be done for the extra indexes.

By contrast, if an index were to cover the relation, then the inequality constraints could be leveraged to

speed up the evaluation of the search corresponding to the second atom. Therefore, to speed up rules

with inequality primitive searches for modern Datalog applications, we cannot rely on program-level

transformations and instead look to speeding up their evaluation with indexes.



CHAPTER 3

Spatial Primitive Searches

In this chapter, we present our two new index selection strategies for accelerating inequality primitive

searches. We begin by detailing the transformation process taken by Datalog engines to translate rules

in logic programs to loop nests. We detail how to translate and hoist inequality constraints that appear in

rules into predicates that can be leveraged by indexed searches. Next, we define a gadget called a spatial

primitive search which abstracts indexable search operations on Datalog relations from the underlying

choice of the index used to evaluate them. We go on to prove an equivalence between the semantics of

spatial primitive searches and orthogonal range queries. We explore multi-dimensional indexes which

can evaluate orthogonal range queries efficiently in a Datalog setting and propose a new index selection

strategy to accelerate spatial primitive searches with R-Trees. We also extend the state-of-the-art index

selection strategy in a different direction, accelerating all spatial primitive searches for a given relation

with a minimal cluster of B-Tree indexes. We present a constructive algorithm to compute this minimal

index selection of B-Trees and prove its correctness.

3.1 Leveraging Inequality Constraints in Loop Nests

3.1.1 Datalog to Nested Loop Searches

First, we will outline the translation process from a Datalog program to a series of loop nests. For

readability, I will use the notation of SOUFFLÉ’s intermediate representation the Relational Algebra

Machine (RAM) language.

26
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direct_jump(EA,Dest) :−
jump_instruction(EA),

instruction_get_op(EA, 1, Op1),

op_immediate(Op1, Dest).

FIGURE 3.1. Datalog Rule

direct_jump(x0, x5) :−
jump_instruction(x0),

instruction_get_op(x1, x2, x3),

op_immediate(x4, x5),

x1 = x0, x2 = 1, x4 = x3.

FIGURE 3.2. Transformed Rule

The first step in the translation process is shown in the above figures. Each named attribute in an atom

is assigned a unique identifier x0, x1, ..., xk. If the name of an attribute in one atom is referenced again

in subsequent atoms in the rule then equality constraints are introduced for the subsequent atoms, en-

forcing that the value of their corresponding attributes must match the one in the first atom. Since there

is no dependence between any of the referenced attributes in the atoms in the rule, it can now be safely

unrolled into a loop nest with equality constraints used in filter operations.

for all t0 ∈ jump_instruction do
for all t1 ∈ instruction_get_op do

for all t2 ∈ op_immediate do
if t1(x1) = t0(x0) and t1(x2) = 1 and t2(x4) = t1(x3) do

if (t0(x0), t2(x5)) /∈ direct_jump do
project (t0(x0), t2(x5)) into direct_jump

FIGURE 3.3. Direct Translation of Datalog Rule to Loop Nest

As shown in the above figure, the direct translation begins by generating the Cartesian product over the

underlying relations of all atoms. The filter predicate is a conjunction of all equality constraints in the

rule and is checked against all generated tuples in the Cartesian product. If the predicate is satisfied, an

existence check is performed on the output tuple to ensure the tuples of a relation are unique and satisfy

the set property. Finally, if the output tuple does not already exist in the relation it is inserted into the

relation.

This naïve unrolling of the Datalog rule into the loop nest is inefficient. The time complexity of

the loop nest will be of the order of the Cartesian product of each relation involved in the rule i.e.

O(
∏
i
|Ri|) where Ri is the relation used in atom Ai of the rule body. For this example, the complexity

is O(|jump_instruction| · |instruction_get_op| · |op_immediate|)). The source of this inefficiency

is that the searches are evaluated in a generate and test approach rather than pruning the search space as
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early as possible. To achieve this, constraints in the filter predicate can be lifted and utilised as search

criteria for indexed searches over the relations.

3.1.2 Indexing Nested Loop Searches

The next step in the translation process is to iteratively hoist the filter predicates into the search opera-

tions in the outer levels of the loop nest. A filter predicate can be hoisted into a search operation if the

filter acts on an attribute of that relation. If a predicate is hoisted it transforms a regular table scan into

an indexed search over the relation. An indexed search is strengthened further by lifting additional filter

predicates into the search, restricting the range of satisfying tuples. The process repeats until reaching a

fix-point when no more filters can be brought higher in the loop nest.

for all t0 ∈ jump_instruction do
for all t1 ∈ instruction_get_op on index t1(x1) = t0(x0) and t1(x2) = 1 do

for all t2 ∈ op_immediate on index t2(x4) = t1(x3) do
if (t0(x0), t2(x5)) /∈ direct_jump do

project (t0(x0), t2(x5)) into direct_jump

FIGURE 3.4. Strengthened Loop Nest using Indexed Searches

In the figure above, we can see predicates in the filter operation raised to higher levels of loop nest for

indexed search operations. Note that a tuple can appear on either the left-hand side or the right side of

a predicate. However, it can only be hoisted to a given level of the loop nest if the other side of the

constraint is a constant. For instance, t1(x1) = t0(x0) could not be hoisted to the outer-most layer

because t1(x1) would not be grounded.

For simplicity, the only predicates that can be lifted and employed in indexed operations are those of the

form ti(xk) = 〈expr〉 or 〈expr〉 = ti(xk) where 〈expr〉 is a constant at the level of ti in the loop-nest.

Since predicates must be of this exact form, seemingly simple predicates such as t1(x2)−1 = 0 may not

be hoisted and leveraged by indexed searches. Therefore, the robustness of rewriting transformations

in the Datalog engine determines the range of predicates that can prune the search space during rule

evaluation.

This transformation technique proves to be incredibly powerful, eagerly pruning the search space of

satisfying tuples as each relation is searched for a much smaller set of tuples required by the rule. Using

a B-Tree to index each relation yields a complexity of a given indexed search asO(|σρ(Ri)|+log(|Ri|))
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where ρ is the filter predicate used by the indexed search. Therefore, the total complexity of evaluating

the loop nest becomes O(
∏
i
|σρ(Ri)| + log(|Ri|)). These search predicates dramatically reduce the

search space of satisfying tuples since the resultant product is often orders of magnitude smaller than

the Cartesian product across all involved relations, leading to significant speed ups in evaluation time.

3.2 Indexing Inequality Searches

3.2.1 Normalising Constraints to Weak Inequalities

(1) ti(xk) < 〈expr〉

(2) ti(xk) > 〈expr〉

(3) ti(xk) ≤ 〈expr〉

(4) ti(xk) ≥ 〈expr〉

Inequality constraints can appear in any of the four distinct forms shown above. Note that another form

is possible where expressions appear on the left-hand side and constraints appear on the right-hand side

of the predicate. However, by swapping the left and right-hand sides of the constraint and reversing the

direction of the inequality, the expression can match the above form. Typically, data structures accept

lower and upper bounds for range queries where satisfying values may be equal to either bound. The

first two classes of constraints with strict inequalities, therefore, pose a problem and must be converted

to weak inequalities. To use data structures for indexed searches on inequality constraints, we consider

a rewrite transformation to translate any strict inequality into a weak inequality.

Consider signed integer types, the most commonly used type in Datalog engines. Typically a fixed size is

given for the type, i.e. 32 bits, and the range is divided into the interval [−231−1, 231]. A naïve approach

to transform a strict inequality constraint into a weak inequality would be to increment or decrement a

value by 1 as required, converting a strict inequality to a weak inequality. However, this approach leads

to complications. A constraint may attain the maximum or minimum value of a domain and adding or

subtracting the value 1 may result in an integer overflow. Furthermore, for more sophisticated types such

as floating-point numbers, attaining the next highest or lowest representable value introduces its own set

of problems. However, we cannot merely leave strict inequalities as naïve filter operations as this would

place the burden on the user to rewrite every strict inequality constraint into a weak inequality to use

the predicate in an indexed search. Therefore, to translate strict inequalities to weak inequalities, we

perform the following rewrite transformations:
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ti(xk) < 〈expr〉 −→ ti(xk) ≤ 〈expr〉 ∧ ti(xk) 6= 〈expr〉

ti(xk) > 〈expr〉 −→ ti(xk) ≥ 〈expr〉 ∧ ti(xk) 6= 〈expr〉

This approach widens the range of the indexed search by one value and requires the application of an

extra filter predicate on every iteration of the loop nest. However, this cost is negligible compared to the

potential performance gains from leveraging the inequality constraint in an indexed search. Ultimately,

we ensure that indexed operations maintain semantic correctness and are used automatically for a range

of primitive types (float, unsigned and signed numbers) without burdening the user with extensive man-

ual rewriting of strict inequalities.

3.2.2 Strengthening Filter Constraints

In the same manner, as with equality constraints, we hoist inequality constraints from filters deep in the

loop nest to outer layers to be used for indexed searches. When lower and upper bounds constrain a

given attribute, both bounds can be utilised by the indexed search, performing a two-sided range query

on the relation. However, care is required when multiple lower or upper bounds are present for the same

attribute. Consider the following simplified rule from DDISASM (Flores-Montoya and Schulte, 2020):

valid_multiplier(Mult, Size) :−
data(Size),

multiplier(Mult),

Mult ≥ 1,Mult ≥ Size.

FIGURE 3.5. Datalog Rule with Two Lower Bounds

In the above Datalog Rule, the multiplier atom has two provided lower bounds, 1 and Size. To accel-

erate this search, we wish to perform an indexed search by raising the lower bounds from the body of

the loop nest upwards as we did before with equality constraints. However, when performing a range

query on an index, only a single lower bound for an attribute can be provided. A naïve approach would

be to arbitrarily raise one of the filter predicates and use it for the index search, leaving the remaining

predicate intact in a filter operation. However, a larger lower bound will restrict the range of satisfying

tuples further than a smaller one. The challenge lies in that before evaluating the rule, it is unknown
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which lower bound is greatest.

for all t0 ∈ data do
for all t1 ∈ multiplier on index t1(x0) ≥ max(1, t0(x0)) do

if (t1(x0), t0(x0)) /∈ valid_multiplier do
project (t1(x0), t0(x0)) into valid_multiplier

FIGURE 3.6. Loop Nest with Indexed Searches

Therefore, as the filter predicates are hoisted up and used to perform an indexed search on multiplier,

the loop nest is rewritten so that the maximum of the two lower bounds comprises the lower bound

of the search. An analogous technique is employed for when multiple upper bounds appear for the

same attribute, considering the minimum of the two upper bounds when forming the upper bound of the

indexed search. The transformation ensures that the tightest bound is used for the indexed search and

prunes the search space as much as possible.

In practice, an attribute should only be searched once over a predicate specifying the range of satisfying

values. When the range is tight, the predicate forms an equality constraint. Otherwise, inequalities

bound the values that are attainable. However, when multiple equality constraints or both equality and

inequality constraints are present for the same attribute, then it should be handled correctly. Consider

the following program:

valid_multiplier(Mult, Size) :−
data(Size),

multiplier(Mult),

Mult = 1,Mult = Size.

FIGURE 3.7. Datalog Rule with Two Equality Constraints

Both equality constraints must be satisfied for the body of the rule to hold. However, for an indexed

search, only one predicate can be used. Therefore, the technique we propose is to lift the first filter

predicate on the attribute into the indexed search. For all subsequent equality constraints on that attribute,

we issue a new filter predicate in the loop-nest to check whether the new constraints match the original.

This transformation is still able to use the filter predicates to perform an index search yet retains the

semantics of the original Datalog program.
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for all t0 ∈ data do
for all t1 ∈ multiplier on index t1(x0) = 1 do

if (t1(x0), t0(x0)) /∈ valid_multiplier do
project (t1(x0), t0(x0)) into valid_multiplier

FIGURE 3.8. Indexed Searches

Note that further transformations take place that lift filter predicates to appear as early in the loop-nest

as possible. By lifting filter predicates upwards to the outer layers, when the predicates are not satisfied,

the loop-nest is exited earlier, eliminating redundant iterations of the Cartesian product. For instance,

the above loop nest can transform to:

for all t0 ∈ data do
if t0(x0) 6= 1 do

for all t1 ∈ multiplier on index t1(x0) = 1 do
if (t1(x0), t0(x0)) /∈ valid_multiplier do

project (t1(x0), t0(x0)) into valid_multiplier

FIGURE 3.9. Filters Lifted Above Indexed Searches

Since t0(x0) 6= 1 relies only on the outermost loop to ground t0(x0) it can be lifted to this position in

the loop nest. After the above transformation, if multiple equality constraints on the same attribute have

different values, then the indexed search is avoided entirely. This transformation can always be applied

when any of the equality constraints are usable for an indexed search. The reason for this is that used

equality constraints must appear grounded, either as constants or tuple values from above the current

level in the loop nest. Therefore, the filter predicate that checks whether multiple equality constraints

coincide is always possible, raising the filter predicate above the indexed search at one level higher in

the loop nest.

Finally, we consider the case when both equality and inequality constraints apply to an attribute. We

observe that equality constraints are a specialisation of inequality constraints where the lower and upper

bounds are equal. Therefore, generally, an equality constraint is more restrictive than an inequality

constraint and should be preferred for use in an indexed search. However, as with multiple equality

constraints, the inequality constraint must also be satisfied for the rule body to hold. Therefore, we

perform the following transformation:
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valid_multiplier(Mult, Size) :−
data(Size),

multiplier(Mult),

Mult = 1,Mult ≥ Size.

FIGURE 3.10. Datalog Rule with Equality and Inequality Constraints

for all t0 ∈ data do
if 1 ≥ t0(x0) do

for all t1 ∈ multiplier on index t1(x0) = 1 do
if (t1(x0), t0(x0)) /∈ valid_multiplier do

project (t1(x0), t0(x0)) into valid_multiplier

FIGURE 3.11. Filter Predicates Hoisted to Indexed Searches

As discussed, the indexed search always use the equality constraint. Furthermore, as with the transfor-

mation of multiple equality predicates, the values for the constraints are compared. Specifically, a check

is performed on the value of the equality constraint to ensure that it satisfies the inequality constraint.

This strategy allows for the indexed search to be the most effective at pruning the search space by using

the most restrictive predicate and exiting early from the loop nest if the inequality constraints are not

satisfied.

3.3 Abstracting Search Operations as Spatial Primitive Searches

We have demonstrated how logic programs are translated into equivalent imperative programs by trans-

formation to a loop nest. Crucial to the performance of the loop nest evaluation is the performance of

searches on these relations that can be accelerated by indexes. There are a wealth of options for indexes

to accelerate search operations such as hash-indexes, B-Trees or R-Trees. However, in essence, each

search operation is semantically just a filter on a Datalog relation, reducing all tuples of a relation to

only those satisfying some constraints. Therefore, we can abstract these search operations as spatial

primitive searches, focusing only on the semantics of these searches without concern for the concrete

choice of index chosen to evaluate them.

We define a spatial primitive search as follows:

σl1≤x1≤u1,...,lk≤xk≤uk
(Ri) = {t ∈ Ri | l1 ≤ t(x1) ≤ u1, ..., lk ≤ t(xk) ≤ uk}.
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We borrow the notation of an equality primitive search except now we introduce L = {l1, l2, ..., lk} and

U = {u1, u2, ..., uk} to represent the lower and upper bounds for each search predicate. All elements of

L and U are values which can be constants or values of tuples above the current level of the loop nest.

Equality Primitive Searches

Inequality Primitive Searches

FIGURE 3.12. Classes of Spatial Primitive Searches

Spatial primitive searches generalise the notion of an equality primitive search which can only abstract

equality primitive searches, to now support inequality primitive searches. For each attribute xi, an equal-

ity primitive search can have constraints of the form xi = vi. With spatial primitive searches however,

we have constraints of the form li ≤ xi ≤ ui. Thus, an equality primitive search is a specialisation of a

spatial primitive search where for all constrained attributes xi we have li = ui.

Inequality primitive searches are now expressible as spatial primitive searches, where there exists at least

one attribute xi where its lower and upper bounds are not equal, i.e. li 6= ui. For simplicity we write ri

to represent a range constraint on an attribute xi i.e. ri = li ≤ xi ≤ ui where li 6= ui. By our definition,

every spatial primitive search is therefore either an equality primitive search or an inequality primitive

search on a Datalog relation.
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3.4 Orthogonal Range Querying

FIGURE 3.13. A Spatial Primitive Search Interpreted as an Orthogonal Range Query

Interestingly, spatial primitive searches are in effect a filter operation applied to a set of tuples in a

relation. Figure 3.13 visualises in 3-dimensions the semantics of spatial primitive searches. The tuples

of a relation with arity 3 correspond to points in 3-dimensional space, with each attribute mapping

to a given coordinate axis. The lower and upper bounds on each attribute correspond to intervals in

each dimension, geometrically defining the blue box. Finally, the tuples that satisfy the spatial primitive

search (i.e. those that lie within the intervals constraining each attribute value) map to the points bounded

by the blue box.

Orthogonal range querying (Lueker, 1978) is the problem of finding a subset Q of a set of points S in a

d-dimensional space, that lie within a specified d-dimensional box. Clearly, there is a strong connection

between the semantics of spatial primitive searches and orthogonal range queries. We now establish the

correspondence and show how to transform spatial primitive searches into equivalent orthogonal range

queries.
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3.4.1 Evaluating Spatial Primitive Searches as Orthogonal Range Queries

In order to evaluate spatial primitive searches as orthogonal range queries, a formal mapping scheme

must be constructed. We have given a relation R of arity m with k constrained attributes in the spatial

primitive search: σl1≤x1≤u1,...,lk≤xk≤uk
. Define the set of tuples T = σl1≤x1≤u1,...,lk≤xk≤uk

(R) i.e. all

tuples in R that satisfy the spatial primitive search.

An instance of the orthogonal range querying problem requires a set of points S in d-dimensional space.

We make the simplifying assumption that each attribute xi only holds numeric values (i.e. signed in-

tegers, unsigned integers and floating point numbers). We can then set d = m and map each tuple

t ∈ R(x1, ..., xm) to a point p ∈ S using a bijective mapping function f : R 7→ S such that p(xi) = t(xi)

i.e. t = 〈x1, ..., xm〉 7→ p = 〈x1, ..., xm〉.

The only remaining input to specify is the d-dimensional box that represents the query box. We specify

the d-dimensional box geometrically by providing an interval bi = [loweri, upperi] for each dimension

i ∈ {1, ..., d}. The d-dimensional box is then formed by taking the Cartesian product of all intervals

over the provided dimensions i.e. B = [lower1, upper1]× ...× [lowerd, upperd]. We want to construct

the box such that it encloses precisely the points that satisfy the spatial primitive search. For a spatial

primitive search σl1≤x1≤u1,...,lk≤xk≤uk
we have lower bounds L = {l1, l2, ..., lk} and upper bounds

U = {u1, u2, ..., uk}. In the simplest case where |L| = |U | = m, i.e. a lower bound and upper bound

constraint is provided for every dimension, then we simply set bi = [li, ui] for all dimensions.

Suppose an attribute is not constrained by a lower bound in the spatial primitive search. In that case, we

must introduce an artificial lower bound to create an interval for the orthogonal range querying problem.

Therefore, we set loweri = inf(Di) since any point must trivially satisfy this lower bound. Likewise

we set upperi = sup(Di) for when an attribute has no specified upper bound. In the case where an

attribute is entirely unconstrained it’s corresponding interval will be bi = [inf(Di), sup(Di)] which will

be trivially satisfied by all points. Now we wish to prove that the semantics of the orthogonal range

query coincide with the spatial primitive search. To do this, we prove that T = f−1(Q), i.e. the set of

tuples satisfying the spatial primitive search, is the same as that of all points satisfying the orthogonal

range query after mapping the points back to tuples. The proof can be found in Appendix A of this

thesis.
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3.4.2 Choice of Index for Orthogonal Range Querying in Datalog Engines

Now that we have demonstrated how orthogonal range queries can be employed to perform spatial

primitive searches, we need to consider the which index should be used to perform each search. Although

orthogonal range queries are well-studied, selecting the data structure that supports the best query time

complexity will not suffice. In particular, in a Datalog engine, the workload on indexes is comprised

of frequent additions of new tuples to indexes as rules deduce further knowledge. Therefore, a data

structure that efficiently supports dynamic updates is required.

3.4.3 k-d-trees

FIGURE 3.14. A k-d-tree cutting the plane into half-spaces with each non-leaf node
(De Berg et al., 1997)

The first data structure designed to perform multidimensional searching was the k-d tree by Bentley

(1975), an in-memory data structure to query multidimensional point data. Each non-leaf node of the

k-d-tree cuts the entire plane into half-spaces where nodes in the left sub-tree lie on the left half-space

and nodes in the right sub-tree lie in the other. When performing orthogonal range queries, analysis

has shown that the worst-case time complexity is O(k · N1−1/k) where k is the dimensionality of the

k-d-tree, which is not very competitive compared to logarithmic query time expected of tree structures.

Unfortunately, the main weakness of the k-d-tree is that it is not a balanced tree data structure. As a

result, inserting new points will result in the tree becoming unbalanced, and query performance suffers.

A naïve approach would be to rebuild the entire tree on each new insertion, but this is far too costly with
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a workload consisting primarily of updates. Variants of the k-d-tree called adaptive k-d-trees exist such

as the KDB-tree (Robinson, 1981) and BKD-tree (Procopiuc et al., 2003) that re-balance themselves

when sub-tree heights differ, guaranteeing consistent query performance. BKD-trees further improve on

KDB-trees by utilising bulk-loading techniques but they are not applicable to our use case. However,

k-d-trees and their variants are still not the most efficient data structures for performing orthogonal range

queries.

3.4.4 Range Trees

FIGURE 3.15. 2-Dimensional Range Tree (De Berg et al., 1997)

Bentley (1979) further improved on k-d-trees with the invention of range trees. Range trees are recur-

sively defined multi-level search trees where each vertex has an associated d−1-dimensional structure

to compute the range over the remaining dimensions. Range trees improve upon the query perfor-

mance of k-d-trees and their variants by offering an impressive O(logk(n) + |Q|) where Q is the set

of points satisfying the range query. This can be further improved using fractional cascading (Chazelle

and Guibas, 1986) to O(logk−1(n) + |Q|). However, the range tree comes with a space trade-off where

O(n logk−1(n)) space is required compared to a traditional k-d-tree’s O(n) space requirement. Range

trees are promising since they have strong worst-case guarantees on their query performance; however,

a dynamic variant is required if we wish to support frequent insertions during Datalog evaluation. Un-

fortunately, even though dynamic range tree variations exist that offer strong asymptotic range query
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performance, practically, dynamic range trees do not perform well as the algorithmic techniques rely on

large constant factors (Agarwal et al., 1999).

3.4.5 R-Trees

FIGURE 3.16. Tree Structure of the R-Tree and Minimum Bounding Rectangles
(MBRs) of Indexed Spatial Data

Guttman (1984) published a groundbreaking paper detailing a new type of dynamic spatial index with

support for efficient range queries. Much like a B-Tree, each node stores a collection of at most M and

at least M/2 entries, ignoring the root node. Each entry appearing in a leaf-node has two components.

Firstly, it stores the minimum bounding rectangle (MBR) of the spatial object and secondly, a pointer to

the spatial object on disk. Entries in non-leaf nodes have their MBRs minimally enclose the MBRs of

the entries in their child nodes. Since internal nodes must store the MBR enclosing the entries in their

children and MBRs are represented as two corner points in n-dimensional space, the memory overhead

of an R-Tree index can be approximately twice that of a B-Tree index.
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R-Trees can support orthogonal range queries given a d-dimensional box (known as the query rectan-

gle) by recursively traversing down each sub-tree of any node whose MBRs intersect with the query

rectangle. The search continues until reaching the leaf layer and returning any entries in leaf-nodes that

intersect with the query rectangle. Unlike k-d-trees which have strong guarantees on worst-case query

complexity, R-trees may takeO(N) time to perform a given range query where N is the number of spa-

tial objects in the R-Tree. This worst-case behaviour occurs when there is a high degree of overlap in the

MBRs of nodes at the same level. In the above figure, R1 and R2 overlap, so if a query rectangle were to

intersect both R1 and R2, then both sub-trees would require exploration. Despite the poor guarantees re-

garding worst-case query complexity, R-trees have proven to provide impressive practical performance

for efficient spatial indexing. In fact, R-trees are the de-facto spatial index employed in a variety of com-

mercial database engines such as Oracle Spatial (Greener and Ravada, 2013), MySQL (Schwartz et al.,

2012) and PostGIS (Zhang and Yi, 2010). Although the design of R-trees involves leaf-node entries with

pointers to spatial data on disk, there are a variety of in-memory R-Tree implementations which store

the spatial data in main memory.

R-Trees offer a strongO(log(N)) worst-case guarantee for insertion of new spatial objects into the tree.

The procedure begins at the root of the R-Tree, finding a sub-tree to insert the spatial object into it. A

sub-tree of an entry is a candidate if the entry’s MBR encloses the MBR of the new spatial object. If

such an entry exists, then the process repeats for the next layer. The sub-tree of the satisfying node entry

is visited, and again all of the child entries are inspected to find one that encloses the spatial object. The

insertion algorithm continues until reaching the leaf layer and inserting the new entry.

FIGURE 3.17. A Red MBR Must Expand to Accommodate the Blue MBR

However, it is not always the case that a spatial object neatly fits inside a non-leaf node entry’s MBR

at every level in the tree traversal. Therefore, sometimes the MBR of a non-leaf node must be enlarged
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to enclose the newly inserted spatial object. Figure 3.17 illustrates this exact scenario where the MBR

of the spatial object to be inserted does not fit into any of the red candidate entry’s minimum bounding

rectangles. Guttman (1984) proposes expanding the candidate rectangle that requires the least increase

in area to enclose the new spatial object. In the figure above, the left rectangle would enlarge to enclose

the blue rectangle, causing overlap with the left side of the other candidate rectangle. The intuition is

that as rectangles expand and occupy more area, there is a higher chance of overlap between rectangles.

By reducing overlap between rectangles, it will minimise visiting redundant sub-trees that do not contain

the desired spatial objects during range queries. Beckmann et al. (1990) however, introduced a variant

of the R-Tree called the R*-Tree which utilises a different heuristic. R* trees minimise the overlap

between MBRs rather than minimising the area. Therefore, in the figure above, the R* variant would opt

to enlarge the rectangle in the bottom right as it does not create any further overlap with other rectangles.

Another critical parameter affecting the performance of R-Trees is the chosen node splitting algorithm.

Much like B-Trees, when a node overflows, a split must occur to divide the overflowing node into two

new nodes. When splitting occurs, the B-Tree node entries partition into the two new nodes according

to whether they are less or greater than the median of the entry values. After splitting, the links of the

parent nodes must be repeatedly adjusted during the traversal up from the overflowed node, ensuring

that the ordering invariant of the tree is maintained. However, splitting overflowing nodes as a result

of R-Tree insertions is much more complicated. Garcia et al. (1998) demonstrated that computing an

optimal node split would require an algorithm with O(nd) worst-case time complexity where n is the

number of nodes to split and d is the dimensionality of each MBR. Therefore, sub-optimal heuristic

splitting strategies are employed to split overflowing nodes to minimise the introduction of overlap.

FIGURE 3.18. Potential R-Tree Node Splitting Algorithms: (a) Naive (b) Linear (c) Quadratic
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A first idea would be to split the entries in the overflowing node arbitrarily. However, since it takes

linear time to perform the split, a simple O(n) heuristic will outperform a naïve split. The first node

splitting algorithm coined by Guttman (1984) is linear splitting. First, two candidate rectangles are

selected that will belong to opposite nodes after the split. The two rectangles are chosen by picking an

arbitrary dimension and finding the two rectangles with the smallest and largest value in that dimension.

After this, an assignment of remaining nodes to either partition occurs, whichever results in the least

enlargement of the MBR. Another more advanced strategy is quadratic splitting (Guttman, 1984). In

this approach, from all pairs of rectangles, the two rectangles that would be the most wasteful if put

together are chosen. These two rectangles appear in separate partitions as with linear splitting. Next,

the remaining rectangles are sorted in decreasing order by the difference in assignment costs to either

partition, with the highest difference entries. The intuition is that this heuristic minimises the chance of

an entry appearing in the wrong partition and dramatically increasing the cost because it was assigned

later. Quadratic splitting as the name implies has a cost of O(n2) yet tends to deliver much better splits

than linear splitting. Finally, R* Trees employ a unique strategy where after each node split occurs, a

percentage of the entries (usually 30%) are forcefully reinserted. The intuition is that since R-Trees are

highly sensitive to the order of insertion, the rectangles form clusters based on temporal locality. By

reinserting on node overflows the entries are more likely to be reinserted into a region of the tree with

entries that are close in space.

for all t1 ∈ R1 do
...

for all tn ∈ Rn do
project (...) into ...

FIGURE 3.19. Loop-Nest Evaluation of a Datalog Rule

The above diagram illustrates the evaluation of a typical loop nest consisting of nested searches over the

involved relations. Consider, an index to store each relation which degrades insertion performance by

a factor of a constant k. The evaluation of the entire loop nest is, therefore slower by a factor of k. By

contrast, consider an index which degrades searching performance by a factor of k. Since searches occur

at every level of the loop-nest, the time to evaluate the rule degrades by a factor of kn. Since real-world

programs spend most of their time performing searches in the loop nest, typically with rules involving

large numbers of relations, it is crucial that evaluating these searches is fast, even at the cost of insertion

performance. Therefore, the R* variant is the most appropriate choice of splitting algorithm for our use

case.
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There are numerous reasons why R-Trees are suitable to index spatial primitive searches in Datalog.

Firstly, R-trees offer high performance for evaluating orthogonal range queries as evidenced by decades

of usage in spatial databases. R-Trees also support fast O(log(N)) insertion performance without the

overhead of rebuilding the entire data structure as would happen with a static k-d-tree or range tree.

Furthermore, a wide variety of R-Tree splitting algorithms can specialise the index for the workload,

making a trade-off between insertion and query performance. Overall, R-trees are the strongest candidate

for a dynamic spatial index in a Datalog context for the evaluation of spatial primitive searches.

3.5 A Cluster of B-Trees for Spatial Primitive Searches

In the previous section, we established that R-Trees are a promising candidate for evaluating spatial

primitive searches. By mapping each spatial primitive search to an orthogonal range query, every spatial

primitive search is covered by a single R-Tree index per relation. However, R-trees do not offer strong

guarantees on the time complexity of searches, as in the worst-case, the search complexity is propor-

tional to the size of the relation i.e. O(N). By comparison, B-Trees have much stronger guarantees

on the search complexity, with O(|Q| + log(N)) where Q is the set of tuples satisfying the search.

Therefore when relation sizes are large but the number of tuples satisfying the search is small, B-Trees

can offer much stronger performance guarantees. Further, insertion performance is faster for B-Trees

as their splitting algorithms are far more straightforward. Finally, the memory overhead of an R-Tree

is approximately 2× that of a B-Tree, with each node storing a minimum bounding rectangle alongside

each tuple to represent its spatial volume.

For these reasons, we now consider a different index selection strategy, selecting a cluster of B-Trees to

cover each spatial primitive search. First, we extend the notion of a lex-search to cover spatial primi-

tive searches, exploiting B-trees to perform these filters. Next, we prove that specific spatial primitive

searches cannot be evaluated by a lex-search. Specifically, spatial primitive searches where multiple

attributes have inequality constraints cannot be evaluated by a lex-search. We then extend the automatic

index selection scheme to cover every simple spatial primitive search (an SPS that has at most one

attribute with an inequality constraint) for each relation.
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3.5.1 Lex Searches

As with equality primitive searches, we wish to translate spatial primitive searches into lex-searches on

an index `. Recall that a lex-search has the form:

σρ(`,a,b)(R) = {t ∈ R | a v` t v` b}

Given a spatial primitive search σl1≤x1≤u1,...,lk≤xk≤uk
we want to construct our lower and upper bounds

a and b and characterise which indexes ` can cover a given spatial primitive search. If k = m and for

every attribute xi there is a provided lower bound li and upper bound ui then we can set a = 〈l1, ..., lm〉

and b = 〈u1, ..., um〉. However, as with the translation from equality primitive searches to lex-searches,

if a lower bound or upper bound is missing then it must be padded with infimum or supremum values.

We define two index mapping functions from the index of an attribute of the relation to the index of the

corresponding constrained attribute:

lower : {1, ...,m} → {1, ..., k + 1}

upper : {1, ...,m} → {1, ..., k + 1}

Two index mapping functions are required with lower mapping indexes from the relation to the set of

lower bound constraints L and upper mapping to the set of upper bound constraints U .

If an attribute does not appear in the search predicate then it will be mapped to index k + 1 where lk+1

and uk+1 are defined to be ∆, as before. However, now with the introduction of lower and upper bounds,

an attribute can be constrained without both bounds having specified values. This occurs when the range

is one-sided and either the lower bound li or upper bound ui is unspecified. To handle these one-sided

ranges lower will map an index i to index k + 1 if li is left unspecified and similarly upper will do the

same when ui is unspecified.

When constructing the bounds a = lb(l1, ..., lk) = 〈l′1, ..., l′k〉 where:

l′j =

 llowerj , if llowerj 6= ∆

inf(Dj), otherwise





3.5 A CLUSTER OF B-TREES FOR SPATIAL PRIMITIVE SEARCHES 45

and b = ub(u1, ..., uk) = 〈u′1, ..., u′k〉 where:

u′j =

 uupperj , if uupperj 6= ∆

sup(Dj), otherwise


3.5.2 Expressiveness of Lex Searches on Spatial Primitive Searches

Subotić et al. (2018) proved that an index ` covers an equality primitive search σx1=v1,...,xk=vk(R) for all

R ⊆ D if and only if the kth-prefix of ` is comprised of only attributes in the set {x1, ..., xk}. However,

the kinds of spatial primitive searches computable by lex-searches are far more restricted.

LEMMA 1. Given a spatial primitive search σl1≤x1≤u1,...,lk≤xk≤uk
with a range constraint on attribute

xi and a corresponding search set S on a relation R then the search cannot be covered by an index ` if

xi does not appear as the last attribute in the kth-prefix of `.

PROOF. Spatial primitive searches generalise equality primitive searches so the kth-prefix constraint

must be satisfied for spatial primitive searches also. Therefore, if S is not a kth prefix then the theorem

is true. We assume S is a kth prefix from this point forward. ` must be of the form ` = ... ≺ xi ≺ ...

where the attributes occurring in the lex-search may be any from the set AR. Now the kth-prefix must

be of the form: `k = ... ≺ xi ≺ ... using attributes only from the set S. Since xi is not the last

attribute in the kth-prefix there must be some other attribute at the end i.e. xj . Therefore, we can write

`k = ... ≺ xi ≺ ... ≺ xj .

Now consider the tuple with the order of attributes written in the order of `k where:

t1 = 〈..., li, ..., uj + 1〉

R = {t1}

Considering the result of the spatial primitive search:

σl1≤x1≤u1,...,lk≤xk≤uk
(R) = ∅

The set of satisfying tuples is empty because the value of attribute xj is uj + 1 which exceeds the upper

bound in the spatial primitive search.
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Now, when considering the lex search: We have:

a = 〈..., li..., lj〉

b = 〈..., ui, ..., uj〉

We note that li 6= ui since xi has a range constraint.

As a result, we have a v` t1 v` b since lexicographically t1 compares greater than a and smaller than b

and so t1 must be in the result set of the lex-search i.e.

σρ(`,a,b)(R) = {t1}

The lex-search and spatial primitive search do not have the same semantics i.e.

σl1≤x1≤u1,...,lk≤xk≤uk
(R) 6= σρ(`,a,b)(R)

Therefore, there does not exist any ` that covers the spatial primitive search. �

COROLLARY 1. If an attribute xi has an inequality constraint then it must appear at the end of the

kth-prefix of `. Since only one attribute can be at the end of the kth-prefix, it is impossible for a spatial

primitive search with multiple range constraints to be covered by any index.

3.5.3 Evaluating Spatial Primitive Searches with Multiple Range Constraints

We have demonstrated that if there are multiple range constraints, then not all of them can be used by

a lex-search. If each spatial primitive search has at most one range constraint (i.e. it is a simple spatial

primitive search), then no transformation is required. A transformation must occur for spatial primitive

searches with multiple range constraints in order to evaluate them with lex-searches. Specifically, range

constraints need to be removed from the spatial primitive search until at most one remains for a lex-

search to cover it. However, merely removing the range constraint will not preserve the semantics of the

spatial primitive search.

The are two distinct strategies to transform a spatial primitive search with multiple range constraints in

order to use lex-searches.
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(1) Given a spatial primitive search with k range constraints, perform k simple spatial primitive

searches each using one of the range constraints in the indexed search. Next, perform a set-

wise intersection of all of these results, leaving only tuples satisfying all range constraints.

(2) Given a spatial primitive search, discharge range constraints to nested filter operations repeat-

edly until at most one range constraint remains in the indexed search.

for all t0 ∈ R0 do
...

for all tk ∈ Rk on index r1 and on index r2 and on index r3 do
...

project (...) into ...

FIGURE 3.20. Strategy 1

for all t0 ∈ R0 do
...

for all tk ∈ Rk on index r1 do
if r2 ∧ r3 do

...
project (...) into ...

FIGURE 3.21. Strategy 2

σr1

σr2 σr3

FIGURE 3.22. Venn Diagram for Sets of Tuples Satisfying Spatial Primitive Searches
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A spatial primitive search with multiple range constraints can be decomposed into the intersection of

different simple spatial primitive searches, each with a single range constraint. Figure 3.22 illustrates

the sets of tuples satisfying each decomposed simple spatial primitive search. The intersection of these

sets contains all tuples satisfying the original spatial primitive search. Strategy 1 requires computing

each set separately and then performing a set wise intersection. Strategy 2, by contrast, computes a

single one of these sets and filters the tuples for those satisfying the remaining inequality constraints.

To prove that Strategy 2 outperforms Strategy 1 we consider their respective evaluation complexity in

the worst-case. For Strategy 1, a lex-search would need to be performed for each σri which would

consume O(
∑
i
|σri(R)| + log(|R|)) time. After computing each lex-search individually, the set-wise

intersection would then need to be computed. By utilising hash-sets, the intersection can be computed in

O(
∑
i
|σri(R)|). Therefore, we can bound the overall complexity of this approach by O(

∑
i
|σri(R)| +

log(|R|)).

Now for Strategy 2 we pick the first range constraint ri to use in the indexed search and then perform

a filter on the remaining range constraints. Assume for the worst-case analysis that we select the least

constraining range predicate i.e. argmax
i

(|σri(R)|). When performing the corresponding lex-search this

would takeO(argmax
i

(|σri(R)|+log(|R|))). Finally, the result set of the lex-search must be iterated to

filter for the tuples satisfying all of the remaining range constraints which takes O(argmax
i

(|σri(R)|)).

Therefore, the overall time complexity is bounded by O(argmax
i

(|σri(R)| + log(|R|))) which grows

slower asymptotically than O(
∑
i
|σri(R)|+ log(|R|)). Thus, Strategy 2 will outperform Strategy 1.

We note that during index selection time, the distribution of tuples for a relation is not known. Therefore,

there is no way to determine which attribute has the most selective inequality constraint and retain it in

the simple spatial primitive search. For simplicity, the first attribute with a range constraint is retained

in the simple spatial primitive search using the attribute order as it is written in the relation’s declaration

in the Datalog program. For all subsequent range constraints, they are discharged to filter operations

further down in the loop nest.

3.5.4 The Minimum Index Selection Problem for Simple Spatial Primitive Searches

We have now demonstrated that in order to evaluate spatial primitive searches with multiple range con-

straints using lex-searches, only one range constraint can be used in the search. Therefore, for every
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spatial primitive search we use the strategy outlined previously to discharge all range constraints to filter

operations, transforming the original spatial primitive search into a simple spatial primitive search.

The focus now is to extend the framework of Subotić et al. (2018) to cover all simple spatial primitive

searches. We reuse the same objective of the original MISP to minimise the number of indexes such

that all simple spatial primitive searches for a given relation are covered. If all simple spatial primitive

searches for a given relation have no range constraints, then the original technique can be utilised with

no issue. However, to use indexes to speed up inequality primitive searches, we must consider the case

where inequality constraints appear in some of the simple spatial primitive searches for a relation. We

now extend the original auto-index selection technique by defining a partial ordering over simple spatial

primitive searches and reducing our minimum index selection problem to a minimum chain covering

problem.

First, we introduce the notation:

In the original formulation of the MISP, each equality primitive search has a corresponding search set

S. i.e.

σx1=v1,...,xk=vk 7→ {x1, ..., xk}

Likewise, we define a mapping of a simple spatial primitive search to a search set S. The attribute xi

appears in the search set if at least one of its lower bound li or upper bound ui values are specified. i.e.

σl1≤x1≤u1,...,lk≤xk≤uk
7→ {x1, ..., xk}

However, a single search set is not enough to abstract the simple spatial primitive search since an attribute

appearing in the search set does not indicate whether an equality or inequality constraint is acting on the

attribute. Therefore, we introduce a mapping function from a simple spatial primitive search to a pair

of search sets (SEQ, SINEQ). SEQ contains the attributes in the simple spatial primitive search with

equality constraints i.e. li = ui for a constrained attribute xi. Whereas SINEQ contains the attributes

with range constraints i.e. li 6= ui. For convenience, we define S = SEQ ∪ SINEQ, the search set

containing all attributes with either an equality or inequality constraint.

In the index selection scheme for equality primitive searches, Subotić et al. (2018) used the fact that

for a pair of searches S and S′, if S ⊂ S′ and an index ` covers S′, then S can also be covered by `.

However, simple spatial primitive searches are far more restrictive. If the search has a range constraint

then it is no longer sufficient for a search to be the kth prefix of an index ` for it to be covered.
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3.5.5 Characterising Indexes which Cover Simple Spatial Primitive Searches

LEMMA 2. Given a simple spatial primitive search σl1≤x1≤u1,...,lk≤xk≤uk
and its corresponding pair of

search sets (SEQ, SINEQ), and xi ∈ SINEQ then the pair of search sets can be covered by an index ` if

and only if S is the kth-prefix of ` and xi appears as the last attribute in the kth-prefix.

The proof for Lemma 2 can found in Appendix B of this thesis.

Now that we have fully characterised the requirements for a simple spatial primitive search to be evalu-

ated as a lex-search, we must modify the automatic index selection scheme to accommodate these new

requirements. Therefore, we want to characterise the precise conditions under which an index ` can

cover two simple spatial primitive searches.

3.5.6 Covering Simple Spatial Primitive Searches with a Common Index

LEMMA 3. Given two search pairs (SEQ, SINEQ) and (S′
EQ, S

′
INEQ) satisfying |SINEQ| ≤ 1, |S′

INEQ| ≤

1, there exists an index ` that covers both (SEQ, SINEQ) and (S′
EQ, S

′
INEQ) if and only if:

(1) S ⊆ S′ where S = (SEQ ∪ SINEQ) and S′ = (S′
EQ ∪ S′

INEQ).

(2) If xi ∈ S′
INEQ then xi /∈ S.

The proof for Lemma 3 can found in Appendix C of this thesis.

3.5.7 Defining the Minimum Index Selection Problem (MISP)

Now that we have defined the circumstances under which two search pairs derived from simple spatial

primitive searches can be covered by a common index, we can formally define the minimum index

selection problem for simple spatial primitive searches. First, we redefine the notion of an l-cover from

Subotić et al. (2018), to verify whether a selection of indexes covers every search pair derived from a

collection of simple spatial primitive searches. We define an l-cover as follows:

Given a set of search pairs S where every (SEQ, SINEQ) ∈ S satisfies |SINEQ| ≤ 1, and a set L of

indexes on a relation R, we define a predicate l-coverS(L) which holds true if for every search pair

(SEQ, SINEQ) ∈ S , there exists an index ` ∈ L that covers (SEQ, SINEQ).
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Given the notion of an l-cover we would like to find the minimum set of indexes L to cover all search

pairs in S. Therefore, we redefine the minimum index selection problem as follows:

The Minimum Index Selection Problem (MISP) for Simple Spatial Primitive Searches. Given a set

of search pairs S where every (SEQ, SINEQ) ∈ S satisfies |SINEQ| ≤ 1 on a relation R, the minimum

index selection problem is to find the minimum cardinality set of indexes L such that all search pairs are

covered by the index set i.e.

fS = arg min
L:l-coverS(L)

|L|.

3.5.8 Reduction to The Minimum Chain Covering Problem (MCCP)

We have shown that there exists an index ` to cover any two search pairs derived from simple spatial

primitive searches if:

(1) S ⊆ S′ where S = (SEQ ∪ SINEQ) and S′ = (S′
EQ ∪ S′

INEQ).

(2) If xi ∈ S′
INEQ then xi /∈ S.

Now, we wish to construct such an index, given a chain of searches satisfying these constraints by

reduction to a minimum chain covering problem. For simplicity, for two search pairs if they satisfy

the above criteria we write (SEQ, SINEQ) < (S′
EQ, S

′
INEQ). In effect, we are defining a new partial

ordering over search pairs derived from simple spatial primitive searches. Intuitively, by defining a new

partial order which coincides with our requirements for two search pairs to share an index, we can reuse

the original technique by Subotić et al. (2018), minimising the cardinality of a corresponding chain

covering over the lattice to retrieve a minimal index selection. By our new partial ordering, we redefine

a search chain as:

C = {(S1
EQ, S

1
INEQ), ..., (S

k
EQ, S

k
INEQ)} such that (Si

EQ, S
i
INEQ) < (Si+1

EQ , Si+1
INEQ)

LEMMA 4. Given a search chain C = (S1
EQ, S

1
INEQ) < ... < (Sk

EQ, S
k
INEQ), we can construct

an index ` to cover all simple spatial primitive searches that map to search pairs in C if ` = S1 ≺

(S2−S1) ≺ ... ≺ (Sk−Sk−1) where the attributes of S1 and Si−Si−1 are ordered arbitrarily except

for any attribute appearing in Si
INEQ it appears later in the sub-order than any attribute in Si

EQ i.e.

Si
EQ ≺ Si

INEQ with respect to `.
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PROOF.

Following the chain, each of the attributes in a pair of searches is a subset of the next. Therefore, all of

the searches are kth-prefixes of ` and can be covered by if they have no range constraints.

Next, we consider if a search has a range constraint i.e. there exists an attribute x ∈ Si
INEQ. If so

then x appears at the end of the sub-order induced by Si − Si−1. For search set pair, if x ∈ Si
INEQ,

we know that (Si−1
EQ , Si−1

INEQ) < (Si
EQ, S

i
INEQ) and hence x /∈ Si−1 and so attribute x appears later in

the lex-order than all attributes in Si−1. Additionally, for an attribute with an inequality constraint, it

appears at the end of the sub-order within Si − Si−1. Therefore, x occurs at the end of the kth-prefix of

`, and by Lemma 2 can be covered by `. The above proof holds for all elements in the chain, and thus

all search pairs can be covered by the same index `. �

We have demonstrated that given a search chain C, we can construct an index ` that covers all of the

search pairs in the chain. Since this can be done for every chain, we can build indexes in this way to

cover the searches within all search chains. However, we now wish to formalise whether a set of chains

C can cover all search pairs in the set S. We redefine the notion of a c-cover from Subotić et al. (2018).

We define a c-cover as follows:

Given a set of search pairs S where every (SEQ, SINEQ) ∈ S satisfies |SINEQ| ≤ 1, and a set C of

search chains on a relation R, we define a predicate c-coverC(S) which holds true if for every search

pair (SEQ, SINEQ) ∈ S , there exists a search chain C ∈ C that covers (SEQ, SINEQ). i.e.

c-coverS(C) = ∀(SEQ, SINEQ) ∈ S : ∃C ∈ C : (SEQ, SINEQ) ∈ C.

We can therefore define the minimum chain covering problem as follows:

The Minimum Chain Covering Problem (MCCP) for Simple Spatial Primitive Searches. Given

a set of search pairs S where every (SEQ, SINEQ) ∈ S satisfies |SINEQ| ≤ 1 on a relation R, the

minimum chain covering problem is to find the minimum cardinality set of chains C such that all search

pairs are covered by the set of chains i.e.

gS = arg min
C:c-coverS(C)

|C|.



3.5 A CLUSTER OF B-TREES FOR SPATIAL PRIMITIVE SEARCHES 53

We now demonstrate that there is a one-to-one correspondence between solutions of MISP for Simple

Spatial Primitive Searches and MCCP for Simple Spatial Primitive Searches.

LEMMA 5. Given any search set S where each search pair (SEQ, SINEQ) ∈ S satisfies |SINEQ| ≤ 1,

there is a one-to-one correspondence between search chains C that cover S, such that |C| = |S|.

PROOF.

By Lemma 4 we have shown that given a set C of search chains covering all search pairs derived by

simple spatial primitive searches in the set S , one can construct an index set L of cardinality |C| which

also covers S. We now prove the correspondence in the opposite direction i.e. given a set of indexes L

that cover all search pairs derived by simple spatial primitive searches in S that one can construct a set

of chains C of cardinality |L| that cover S. We do this by proving that for any index `, one can construct

a search chain C that covers all the search pairs covered by `.

Following the notation of Subotić et al. (2018), let S` denote the subset of search pairs from S that are

covered by `. By Lemma 3, for any two search pairs (SEQ, SINEQ), (S
′
EQ, S

′
INEQ) covered by the

same index `, they must satisfy:

(1) S ⊆ S′ where S = (SEQ ∪ SINEQ) and S′ = (S′
EQ ∪ S′

INEQ).

(2) If xi ∈ S′
INEQ then xi /∈ S.

The above two conditions are precisely those needed to conclude (SEQ, SINEQ) < (S′
EQ, S

′
INEQ).

Therefore, one can construct a search chain C of these search pairs which covers S`. Since the above

procedure can be performed for all indexes ` in the index set L, one can construct a set of chains C of

cardinality |L| that cover S , completing the proof. �

COROLLARY 2. Given any set of search pairs derived from simple spatial primitive searches S on a

relation R, a minimal index selection can be found by computing a minimum chain covering.
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3.5.9 Algorithms to Solve the MISP in Polynomial Time
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We have demonstrated the equivalence between solutions of the Minimum Index Selection Problem

(MISP) and the Minimum Chain Covering Problem (MCCP) with our construction. Therefore, to com-

pute our minimum index selection, we only need to solve the corresponding minimum chain covering

problem and translate the corresponding search chains to indexes. We follow a similar approach to Sub-

otić et al. (2018), solving the MCCP by Dilworth’s Theorem (Dilworth, 2009). We reuse the reduction

to a maximum matching over a bipartite graph (Fulkerson, 1956) to solve the MCCP. The above figure

illustrates the algorithm.

Algorithm 3 MinChainCover (S)
Input : A set S of search pairs
Output : A minimum chain cover C of S

M←MaximumMatching (S,S, {((SEQ, SINEQ), (S
′
EQ, S

′
INEQ)) ∈ S × S | (SEQ, SINEQ) < (S′

EQ, S
′
INEQ)

and (SEQ, SINEQ) 6= (S′
EQ, S

′
INEQ)})

Initialize C to be the empty set
for all u1 ∈ S s.t. 6 ∃(u0, u1) ∈M do-

Find maximal path (u1, u2), (u2, u3), . . . , (uk−1, uk) ⊆M
Add u1 < u2 < u3 < · · · < uk−1 < uk to C

return C

To compute a minimum chain covering, we construct a bipartite graph where each node represents a

search pair. Each side of the bi-partition contains all search pairs as vertices. An edge is drawn from

a node on the left side to a node on the right side when the search pair on the left compares lower

than the search pair on the right by our partial ordering. Each maximal-path in the max matching then



3.5 A CLUSTER OF B-TREES FOR SPATIAL PRIMITIVE SEARCHES 55

corresponds to a search chain in the lattice. We note that we only consider pairs of search pairs that are

distinct to ensure a well-defined partial ordering over the elements of the lattice.

Algorithm 4 MinIndex (S)
Input : A set S of search pairs
Output : A minimum set L of indexes to cover S

C ← MinChainCover(S)
Initialize L to be the empty set
for all (S1

EQ, S
1
INEQ) < (S2

EQ, S
2
INEQ) < · · · < (Sk−1

EQ , Sk−1
INEQ) < (Sk

EQ, S
k
INEQ) ∈ C do-

Add to L an arbitrary index conforming with
[1] S1 ≺ (S2 − S1) ≺ . . . ≺ (Sk − Sk−1)
[2] Si

EQ ≺ Si
INEQ for all search pairs

return L

To compute a minimum index selection, we first construct a minimum chain covering over the set of

search pairs. We then follow the procedure described previously to construct an index that covers the

same search pairs covered by the chain. Finally, we return this minimum index selection.

The correctness of our algorithm follows from our previous lemmas. With regards to the time com-

plexity, to construct the bipartite graph, we still consider all pairs of searches of which there are |S|2

where S = SEQ ∪ SINEQ, and compare them concerning the partial order which requires considering

in the worst case all m attributes of the relation for each pair of search pairs. Further, the complexity

of the maximum matching remains the same. Therefore the time complexity of our auto-index selection

algorithm is identical to the state-of-the-art index selection technique i.e. O(|S|2.5 + |S|2 ·m).

3.5.10 Robustness and Efficiency of B-Tree SPS

We denote this new index selection strategy as B-Tree SPS (Spatial Primitive Search), automatically

building a minimal cluster of B-Tree indexes to accelerate all simple spatial primitive searches. We note

that any binary search tree index can replace B-Trees in our index selection scheme since any binary

search tree can perform one-dimensional range queries with the desired complexity bounds. However,

in our implementation, we use B-Tree indexes, so we adopt this naming convention. To the best of our

knowledge, the B-Tree SPS technique is novel in its approach in computing a minimum index selection

for inequality primitive searches, automatically and in polynomial time.

B-Tree SPS has several advantages over the state-of-the-art technique. The primary advantage is that

both equality primitive searches and inequality primitive searches for a given relation are considered
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together when performing the index selection, allowing for inequality primitive searches to appear in

the same search chains as equality primitive searches. The effect is that even though an index must

now cover new inequality primitive searches, it is likely for these extra searches to be covered without

building any more indexes than the original technique. We suspect given how infrequent inequality

primitive searches occur, that covering the extra inequality searches without additional indexes is likely

to occur.

If no new extra indexes are built, there will be zero memory overhead relative to the original tech-

nique as no additional maintenance is needed compared to the original technique. More importantly,

evaluation time will be improved considerably when inequality constraints restrict the set of satisfying

tuples heavily. The index selection time will be only slightly longer than the original technique since

the complexity of B-Tree SPS is identical, with only a few new searches adding to the index selection

computation. The compilation time is also not increased if no additional B-Tree indexes are required.

Therefore, the B-Tree SPS technique is highly efficient, accelerating inequality primitive searches with

indexes and potentially incurring zero overhead in both memory overhead and compilation time.

Furthermore, even when new extra indexes are required, because the same search chains can cover in-

equality primitive searches as equality primitive searches, the number of additional indexes would also

be small. The impact on compilation time and memory overhead would be small while still poten-

tially improving the evaluation time of inequality primitive searches significantly. The only noticeable

overhead would be the maintenance of these extra indexes. Typically, real-world Datalog applications

consume the majority of their run-time evaluating searches rather than inserting into indexes. Hence, we

expect the overhead to maintain the additional indexes to be overshadowed by the performance improve-

ment of evaluating inequality primitive searches efficiently. Therefore, the B-Tree SPS index selection

technique is robust for real-world Datalog programs.



CHAPTER 4

Experiments and Results

For our experiments we compare three index selection schemes and evaluate their performance using

various data sets and programs. The following index selection schemes are used for our comparison:

• R-Tree SPS (Spatial Primitive Searches): This index scheme uses an R-Tree for a relation,

if there exists at least one inequality primitive search. Otherwise, a cluster of B-Tree indexes

covers the equality primitive searches of the relation.

• B-Tree SPS (Spatial Primitive Searches): This indexing scheme uses a cluster of B-Tree

structures to cover all simple spatial primitive searches for a relation. If there are multiple

attributes with inequality constraints in an SPS, then it is transformed into a simple spatial

primitive search and remaining attributes with inequality constraints are discharged to filter

operations.

• Base: This index selection strategy uses a cluster of B-Trees for a relation to cover all of its

equality primitive searches. All inequalities are executed as filter operations.

We evaluate these index strategies under different workloads to show their efficiency and effectiveness.

In this chapter, we first present the aims of the experimental analysis, and our rationale for our choice

of experiments. Next, we discuss the empirical results and answer these aims. Finally, we present the

outcome of these experiments and discuss their implications.

Our aims are to answer the following experimental questions:

(Q1) What proportion of spatial primitive searches are inequality primitive searches in real-world

applications? In particular, how often do inequality primitive searches appear in Datalog pro-

grams and how often are they executed?

(Q2) Is R-Tree SPS a better index selection strategy than Base? In particular, how does it compare

with regards to compilation time, memory consumption, and evaluation time?

57



4 EXPERIMENTS AND RESULTS 58

(Q3) Is B-Tree SPS a better index selection strategy than Base? In particular, how does it compare

with regards to compilation time, memory consumption, and evaluation time?

(Q4) Which index selection strategy is better for real world applications? R-Tree SPS or B-Tree

SPS?

The first strategy, R-Tree SPS, has the benefit that a single R-Tree index can speed up every spatial

primitive search over a relation. Furthermore, R-Trees can evaluate spatial primitive searches with

any number of attributes with inequality constraints. However, R-Trees are multi-dimensional data

structures, and thus insertion and searching are more involved withO(n) worst-case search performance

where n is the size of the relation. Only when the data within the R-Tree is well organised can the

search be performed efficiently. Overall, in the worst-case R-Trees require time proportional to the size

of the relation when performing searches. Another drawback is that R-Trees are complex structures that

require storage of minimum bounding rectangles (MBRs) alongside each entry in the tree. Since two

corner points define each MBR, the memory overhead of the R-Tree index is approximately 2× that of

a single B-Tree index.

The second strategy, B-Tree SPS, has the benefit that search performance is O(|Q| + log(n)) in the

worst-case; therefore the evaluation complexity is always bounded to take time proportional to the size

of the output. The primary disadvantage of B-Tree indexes for covering spatial primitive searches is

that multiple B-Tree indexes may be required to cover every search. Extra B-Tree indexes may be con-

structed compared to Base to cover new inequality primitive searches. New tuples must be inserted into

all B-Tree indexes to keep them consistent, degrading insertion performance and increasing memory

usage. Additionally, constructing extra B-Tree indexes adds to the overall compilation time. The other

drawback of a B-Tree index is that searches can only support simple spatial primitive searches, discharg-

ing any extra attributes with inequality constraints to filter operations. Finally, the third strategy, Base,

acts as an experimental control representing the current state of the art index selection scheme used in

SOUFFLÉ.

A key observation that can be made is that if no inequalities are present in a Datalog program, then

all three strategies will perform identically. R-Tree SPS constructs R-Trees only when inequalities are

present in a search. Therefore, when there are none, B-Trees will index all relations. Similarly, the

treatment of searches is identical between B-Tree SPS and Base when the searches contain no inequal-

ities, and thus the selection of indexes will be identical. Since both strategies are robust in the case

where no inequality constraints are present, our experimental analysis will explore the effectiveness of
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either technique to accelerate inequality primitive searches while trading off compile time and memory

overhead.

For our R-Tree index, we use the C++ Boost R-Tree implementation using version 1.71 of Boost. The

implementation is highly optimised, heavily utilising compile-time specialisation through templates to

enhance evaluation time performance. For a B-Tree index, we use the existing B-Tree implementation

in SOUFFLÉ (Jordan et al., 2019b).

For our experiments, we use an AMD Ryzen Threadripper 2990WX 32-Core processor with a base

clock speed of 3.0GHz and a maximum boost clock speed of 4.2GHz. The machine has 128GB of

RAM, and runs Ubunutu version 20.10 as an OS. Version 9.3.0 of GCC compiles the C++ programs

generated by SOUFFLÉ into binaries. GCC compiles the programs with the -O3 flag enabled and with

assertions disabled. Additionally, SOUFFLÉ constructs all program to run with a single thread since the

Boost R-Tree implementation is not thread-safe. Tree traversal hints are disabled for B-Tree indexes

since the Boost R-Tree does not use this technique in its implementation. For Boost’s R-Tree parameter,

we employ the R* splitting algorithm and select the maximum entries per node to be a fixed size of 16

to control the frequency of node splitting and re-insertions.

We used the Linux ‘time’ command to measure compilation time, memory consumption and evaluation

time of programs with the various index selection strategies. Since SOUFFLÉ is an in-memory Datalog

engine, excessive memory consumption can result in the machine running out of memory and crashing

during evaluation. Therefore, we measure the maximum resident set size during program evaluation

since this represents the memory required to perform the analysis without crashing. To summarise

the performance characteristics of each technique relative to the original scheme, we use the following

statistics:

Compilation Overhead =
Compilation Time using New Strategy

Compilation Time using Base

Memory Overhead =
Maximum RSS using New Strategy

Maximum RSS using Base

Evaluation time Speedup =
Evaluation Time using Base

Evaluation Time using New Strategy
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In order to demonstrate the effectiveness of each technique to accelerate inequality primitive searches

we use a combination of synthesised and real-world benchmarks.

• Nearby Natural Numbers is a synthesised benchmark to compute all pairs of numbers within

a given range of each other. The benchmark exploits indexed inequality primitive searches to

prune the search space eagerly.

• Nearby Points is another synthesised benchmark which is a two dimensional analogue of

the previous benchmark. The program computes all points that are within a given range of

each other, serving to demonstrate how each strategy performs when multiple attributes have

inequality constraints.

• Tax is the next synthesised benchmark. This benchmark showcases a spatial primitive search

with two different attributes with inequality constraints. Each attribute with an inequality con-

straint is weakly selective but when used in conjunction they are highly selective. The bench-

mark stresses evaluation performance for multi-dimensional searches.

• Insert is the final synthesised benchmark, stressing the maintenance cost of each index se-

lection strategy by inserting 10, 000, 000 entries into a relation. The searches on the relation

can only be covered by constructing n× the number of B-Tree indexes for the B-Tree SPS

technique compared to Base.

• DOOP (Bravenboer and Smaragdakis, 2009) is a static program analysis framework deploy-

ing pointer-analysis for Java programs. The included DaCapo suite of Java programs serve as

input in our experimental evaluation of the context-insensitive analysis. DOOP is a large scale

benchmark, taking millions of tuples as input and generating tens of millions of output tuples.

The implementation of DOOP is highly optimised to take advantage of the underlying eval-

uation engine of SOUFFLÉ. In particular, loop schedules which are most crucial to achieving

high performance are user annotated to achieve optimal performance. Therefore, the effect on

the indexing strategy will be most apparent in DOOP as other factors affecting the evaluation

time are already highly optimised. Since inequality primitive searches occur very infrequently,

we expect no improvement in evaluation time for DOOP. However, DOOP serves as a critical

benchmark to demonstrate the robustness of the index selection strategies as any extra overhead

introduced by either technique will be immediately apparent.

• Amazon Virtual Private Cloud (VPC) Security Analysis (Backes et al., 2019) is the next

real-world benchmark, detecting security vulnerabilities in Amazon’s Virtual Private Cloud

service. Unlike DOOP, which is handcrafted to take advantage of the evaluation strategies
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of SOUFFLÉ, a domain-specific language generates the Datalog program for VPC, resulting in

unoptimised output. Therefore, inefficient loop schedules will be present and be responsible for

the majority of the evaluation time. Additionally, VPC has few inequality primitive searches

and therefore we expect to see no improvement from either index selection strategy.

• DDISASM (Flores-Montoya and Schulte, 2020) is a dis-assembler which takes as input a

stripped binary program and produces assembly that compiles down to the same binary. The

tool represents state of the art in disassembly, outperforming and producing more accurate

output than other tools. DDISASM uses inequality constraints infrequently, yet inequality

primitive searches consume a large proportion of the evaluation time. We, therefore, expect

considerable performance gains with our indexing strategies for DDISASM. We note that loop

schedules were hand optimised to eliminate their influence from our performance evaluation

and instead showcase the performance impact of the new indexing schemes.

4.1 (Q1) Frequency and Distribution of Spatial Primitive Searches

We want to evaluate the extent to which inequality primitive searches occur statically in Datalog pro-

grams and to what extent they contribute to their evaluation time. In order to collect this data, we use the

Base index selection scheme on a suite of real-world programs, i.e. DOOP, VPC and DDISASM. We

label spatial primitive searches that could use an inequality constraint as inequality primitive searches.

Using this labelling approach, we can then consider the frequency of these inequality primitive searches

in both a static and dynamic context.

We begin by inspecting the static distribution of spatial primitive searches as they appear in real-world

Datalog programs. Specifically, how often do inequality primitive searches appear in these Datalog

programs?
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Program Equality Primitive Searches (%) Inequality Primitive Searches (%)
DOOP 99.4 0.6

VPC N-1075 (sec1) 98.7 1.3
VPC N-1075 (sec2) 98.9 1.1
VPC N-1075 (sec3) 98.7 1.3
VPC N-2340 (sec1) 98.4 1.6
VPC N-2340 (sec2) 98.7 1.3
VPC N-2340 (sec3) 98.3 1.7
VPC N-3500 (sec1) 98.8 1.2
VPC N-3500 (sec2) 98.9 1.1
VPC N-3500 (sec3) 98.7 1.3
VPC N-3511 (sec1) 98.8 1.2
VPC N-3511 (sec2) 98.9 1.1
VPC N-3511 (sec3) 98.7 1.3
VPC N-9087 (sec1) 98.8 1.2
VPC N-9087 (sec2) 98.9 1.1
VPC N-9087 (sec3) 98.7 1.3

DDISASM 96.9 3.1
TABLE 4.1. Static Distribution of Spatial Primitive Searches

Equality Primitive Searches (96.9 %)

Inequality Primitive Searches (3.1 %)

FIGURE 4.1. Static Distribution of Spatial Primitive Searches (DDISASM)

The table above details the distribution of spatial primitive searches in real-world programs. We find

that inequality primitive searches are very infrequent, comprising at most 3.1% of the distribution of

searches in real-world programs, with the highest frequency occurring in DDISASM.

Another helpful statistic is to inspect the attributes of every atom and see the distribution of constraints

for each atom. The distribution divides into three types of constraints: no constraint, equality constraint

or inequality constraint.
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Program No Constraint (%) Equality Constraint (%) Inequality Constraint (%)
DOOP 23.7 76.1 0.2

VPC N-1075 (sec1) 23.3 76.1 0.6
VPC N-1075 (sec2) 24.7 74.9 0.4
VPC N-1075 (sec3) 21.8 77.6 0.6
VPC N-2340 (sec1) 27.4 71.9 0.7
VPC N-2340 (sec2) 28.4 71.0 0.6
VPC N-2340 (sec3) 25.5 73.7 0.8
VPC N-3500 (sec1) 23.3 76.1 0.6
VPC N-3500 (sec2) 24.7 74.9 0.5
VPC N-3500 (sec3) 21.8 77.6 0.6
VPC N-3511 (sec1) 23.3 76.1 0.6
VPC N-3511 (sec2) 24.7 74.9 0.5
VPC N-3511 (sec3) 21.8 77.6 0.6
VPC N-9087 (sec1) 23.3 76.1 0.6
VPC N-9087 (sec2) 24.7 74.9 0.5
VPC N-9087 (sec3) 21.8 77.6 0.6

DDISASM 32.5 66.0 1.5
TABLE 4.2. Attribute Constraint Distribution in Spatial Primitive Searches

No Constraint (32.5 %)

Equality Constraint (66.0 %)

Inequality Constraint (1.5 %)

FIGURE 4.2. Distribution of Attribute Constraints in Spatial Primitive Searches (DDISASM)

Table 4.2 demonstrates how infrequently inequality constraints apply to attributes in searches. All pro-

grams have less than 1% of their attribute constraints as inequality constraints except for DDISASM

(1.5%). Overall, it is quite clear that inequality primitive searches are very infrequent compared to

equality primitive searches when looking at their composition in programs.

The final statistic that we use to analyse the static frequency of inequality primitive searches is their

appearance in rules. We consider the proportion of rules that contain at least one inequality primitive

search. By considering the frequency of rules with inequality primitive searches, we can gain further

intuition for what proportion of programs are comprised by inequality primitive searches.
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Program Rules without Rules with
Inequality Primitive Searches (%) Inequality Primitive Searches (%)

DOOP 95.54 4.46
VPC N-1075 (sec1) 96.88 3.12
VPC N-1075 (sec2) 96.92 3.08
VPC N-1075 (sec3) 96.79 3.21
VPC N-2340 (sec1) 95.30 4.70
VPC N-2340 (sec2) 95.39 4.61
VPC N-2340 (sec3) 95.10 4.90
VPC N-3500 (sec1) 96.88 3.12
VPC N-3500 (sec2) 96.92 3.08
VPC N-3500 (sec3) 96.79 3.21
VPC N-3511 (sec1) 96.88 3.12
VPC N-3511 (sec2) 96.92 3.08
VPC N-3511 (sec3) 96.79 3.21
VPC N-9087 (sec1) 96.88 3.12
VPC N-9087 (sec2) 96.92 3.08
VPC N-9087 (sec3) 96.79 3.21

DDISASM 96.71 3.29
TABLE 4.3. Proportion of Rules with Inequality Primitive Searches

As can be seen from Table 4.3, we find that there are very few rules with inequality primitive searches,

with VPC N-2340 having 4.90% of its rules containing at least one inequality primitive search. Over-

all, when considering the appearance of inequality primitive searches statically in real-world Datalog

programs, they are very infrequent, being comprised almost exclusively by equality primitive searches

instead.

We now shift our focus to the dynamic distribution of inequality primitive searches in Datalog programs.

Specifically, how often do inequality primitive searches occur during evaluation time?

The first dynamic statistic to consider is the distribution of the total atom frequency that inequality

primitive searches comprise. Within each rule, atoms are evaluated by performing spatial primitive

searches and iterating through the tuples retrieved by each search, with each iteration over the atom in

a rule, its atom frequency increases by one. The atom frequency statistics derive from the profiler tool

provided with SOUFFLÉ, evaluated on real-world benchmarks run with different fact folders.
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Fact Folder Equality Primitive Searches (%) Inequality Primitive Searches (%)
antlr 99.73 0.27
bloat 99.64 0.36
chart 99.75 0.25

eclipse 99.61 0.39
fop 99.73 0.27

hsqldb 99.61 0.39
jython 99.55 0.45
luindex 99.60 0.40
lusearch 99.60 0.40

pmd 99.71 0.29
xalan 99.71 0.29

TABLE 4.4. Dynamic Atom Frequency Distribution of Spatial Primitive Searches (DOOP)

Network and Analysis Equality Primitive Searches (%) Inequality Primitive Searches (%)
VPC N-1075 (sec1) 99.99983 0.00017
VPC N-1075 (sec2) 99.99985 0.00015
VPC N-1075 (sec3) 99.99983 0.00017
VPC N-2340 (sec1) 99.99950 0.00050
VPC N-2340 (sec2) 99.99950 0.00050
VPC N-2340 (sec3) 99.99950 0.00050
VPC N-3500 (sec1) 99.99999 0.00010
VPC N-3500 (sec2) 99.99999 0.00010
VPC N-3500 (sec3) 99.99999 0.00010
VPC N-3511 (sec1) 99.99999 0.00010
VPC N-3511 (sec2) 99.99999 0.00010
VPC N-3511 (sec3) 99.99999 0.00010
VPC N-9087 (sec1) 99.99999 0.00010
VPC N-9087 (sec2) 99.99999 0.00010
VPC N-9087 (sec3) 99.99999 0.00010

TABLE 4.5. Dynamic Atom Frequency Distribution of Spatial Primitive Searches (VPC)

Tables 4.4 and 4.5 indicate that for two of the three real-world benchmarks tested, the atom frequency of

inequality primitive searches is below 0.1% of the total. Since atoms with inequality primitive searches

occur very infrequently, the statistics indicate that inequality primitive searches do not comprise much

of the evaluation time for either DOOP or VPC.
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For DDISASM, we find that inequality primitive searches contribute significantly to the total atom fre-

quency ranging from 56.7% up to 96.24% of the total frequency. Considering that inequality primitive

searches only comprise 3.1% of all spatial primitive searches in DDISASM, the statistic indicates that

inequality primitive searches are not evaluated efficiently compared to equality primitive searches.

Another useful dynamic statistic to explore is the proportion of the overall evaluation time consumed

by inequality primitive searches. It is challenging to measure this directly since searches that appear

at lower levels in the loop-nest execute more frequently and contribute more to the evaluation time

than those positioned higher in the loop-nest. Therefore, we use a coarse-grained statistic by instead

considering the distribution of the evaluation time contributed by each type of rule. We again divide

rules into two groups: rules without inequality primitive searches and rules with inequality primitive

searches.
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Fact Folder Rules without Rules with
Inequality Primitive Searches (%) Inequality Primitive Searches (%)

antlr 99.00 1.00
bloat 98.90 1.10
chart 99.07 0.93

eclipse 98.82 1.18
fop 99.00 1.00

hsqldb 98.71 1.29
jython 98.78 1.22
luindex 98.84 1.16
lusearch 98.88 1.12

pmd 99.01 0.99
xalan 98.93 1.07

TABLE 4.6. Dynamic Run-Time Distribution of Rules (DOOP)

From Table 4.6, we can see that less than 1.29% of the evaluation time consists of rules containing

inequality primitive searches. In other words, even if inequality primitive searches were instantaneous,

the overall program evaluation time could only be reduced by 1.29%. DOOP, therefore, illustrates a

scenario which does not stand to benefit significantly from indexing inequality primitive searches.

Network and Analysis Rules without Rules with
Inequality Primitive Searches (%) Inequality Primitive Searches (%)

N-1075 sec1 99.99995 0.00005
N-1075 sec2 99.99995 0.00005
N-1075 sec3 99.99995 0.00005
N-2340 sec1 99.99991 0.00009
N-2340 sec2 99.99984 0.00016
N-2340 sec3 99.99991 0.00009
N-3500 sec1 99.99999 0.00001
N-3500 sec2 99.99999 0.00001
N-3500 sec3 99.99999 0.00001
N-3511 sec1 99.99999 0.00001
N-3511 sec2 99.99999 0.00001
N-3511 sec3 99.99999 0.00001
N-9087 sec1 99.99999 0.00001
N-9087 sec2 99.99999 0.00001
N-9087 sec3 99.99999 0.00001

TABLE 4.7. Dynamic Run-Time Distribution of Rules (VPC)
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Table 4.7 illustrates an even less ideal scenario for indexed inequalities as less than one ten-thousandth

of one per cent of the evaluation time is spent on rules with inequality primitive searches. Therefore, we

expect zero evaluation time improvement from VPC.
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The above figure indicates that a significant proportion of time in DDISASM is spent evaluating rules

with inequality primitive searches. The proportion of the evaluation time spent on these rules ranges

from 4.03% up to as high as 74.66%. Given that the number of rules with inequality primitive searches

is only 3.29%, this indicates that inequality primitive searches are not evaluated efficiently.

Overall, the statistics gathered indicate that although inequality primitive searches occur relatively in-

frequently compared to equality primitive searches in Datalog programs viewed statically, there exist

real-world benchmarks that spend a significant proportion of their evaluation time evaluating them. The

evidence suggests that speeding up inequality primitive searches can dramatically reduce the time to

evaluate such programs.
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4.2 (Q2) R-Tree SPS vs Base

We have demonstrated that although inequality primitive searches are infrequent in Datalog programs,

they can sometimes comprise a large portion of the evaluation time. Therefore, we now move on to

evaluating our first proposed index selection strategy, R-Tree SPS. We consider R-Tree SPS compared

to the current state of the art index selection technique, Base, evaluating its ability to speed up inequality

primitive searches across a range of synthesised and real-world Datalog benchmarks.

.decl natural(x : number)

.input natural

.decl nearby_naturals(x : number, y : number)

.output nearby_naturals

nearby_naturals(x, y) :− natural(x), natural(y),

x < y, y ≤ x+ 10.

FIGURE 4.3. Nearby Naturals Program

Index Selection Strategy Number of B-Tree Indexes Number of R-Tree Indexes
Base 2 0

R-Tree SPS 1 1
TABLE 4.8. Number of Indexes (Nearby Naturals)

For our first synthesised benchmark, we use the Nearby Naturals program, where the inequality con-

straint on y heavily limits the number of satisfying tuples. Table 4.8 illustrates that both techniques

construct the same number of indexes. R-Tree SPS uses an R-Tree index to cover the natural rela-

tion since we apply an inequality primitive search on it to evaluate our search. For the other relation,

nearby_naturals, R-Tree SPS uses a B-Tree index since it has no inequality primitive searches. Base

covers the two relations with a single B-Tree index each.
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Number of Naturals Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (R-Tree SPS) (Base) (R-Tree SPS)

20000 8952 14168 0.62 0.08
40000 12856 23216 2.36 0.16
60000 17148 32576 5.26 0.24
80000 21164 41772 9.28 0.32
100000 25212 51120 14.46 0.41

TABLE 4.9. Maximum Resident Set Size (KB) and Evaluation Time (s) (Nearby Naturals)
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The above figure illustrates the memory overhead of R-Tree SPS relative to Base. The R-Tree SPS

strategy incurs a significant memory overhead, consuming 1.58× to 2.03× the memory of Base. In

terms of memory consumption, Base is superior to R-Tree SPS.
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The above figure demonstrates that the R-Tree SPS technique provides significant speedups ranging

from a 7.75× improvement to a 35.26× improvement in evaluation time compared to the Base selec-

tion scheme. As the input size, n increases linearly; the speedup also increases almost linearly. The

performance improvement is a natural consequence of the fact that using the inequality constraint in the

indexed scan prunes the relation for satisfying tuples eagerly compared to Base which naïvely generates

all pairs of naturals and filters them. Therefore, since evaluation time is most important, and R-Tree

SPS delivers dramatic speedups over Base, we can accept a memory overhead of 2× for the improved

performance. Overall, R-Tree SPS significantly outperforms Base for this benchmark.

.decl point(x : number, y : number)

.input point

.decl nearby_points(x1 : number, y1 : number, x2 : number, y2 : number)

.output nearby_points

nearby_points(x1, y1, x2, y2) :− point(x1, y1), point(x2, y2),

x1 < x2, x2 ≤ x1 + 10,

y1 < y2, y2 ≤ y1 + 10,

FIGURE 4.4. Nearby Points Program
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The Nearby Points program generalises the previous synthesised benchmark to two dimensions. A

number of points n are generated in the range [0,
√
n] × [0,

√
n] and pairs of points whose x and y

coordinates both differ by at most k = 10 are queried. The benchmark uses the ability of an R-Tree

index to natively performing searches with any number of attributes with inequality constraints.

Index Selection Strategy Number of B-Tree Indexes Number of R-Tree Indexes
Base 2 0

R-Tree SPS 1 1
TABLE 4.10. Number of Indexes (Nearby Points)

As with the previous benchmark, Table 4.10 showcases that R-Tree SPS uses an R-Tree index to cover

the point relation. R-Tree SPS constructs an R-Tree index as an inequality primitive search applies to

point. The other relation has no inequality primitive searches, so a B-Tree index covers the other rela-

tion. We note that this is possible since the R-Tree index can natively support any number of attributes

with inequality constraints in a spatial primitive search and can cover all spatial primitive searches of a

relation with a single R-Tree index.

Number of Points Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (R-Tree SPS) (Base) (R-Tree SPS)

20000 78100 160108 1.36 0.91
40000 154900 323932 3.93 1.87
60000 229872 468128 7.64 2.86
80000 307340 626280 12.58 3.83
100000 385888 757156 19.01 4.73

TABLE 4.11. Maximum Resident Set Size (KB) and Evaluation Time (s) (Nearby Points)
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The above figure demonstrates again approximately a 2× memory overhead of R-Tree SPS over Base.
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The above figure showcases similar behaviour to the previous benchmark with speedup almost linearly

increasing as the input size n grows linearly (ranging from 1.49× to 4.01×). The R-Tree SPS strategy

again proves to be better than Base, dramatically improving the evaluation speed even with a memory

overhead of 2×.
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.decl employee(name : symbol, salary : number, tax : number)

.input employee

.decl tax_fraud(name1 : symbol, name2 : symbol)

.output tax_fraud

tax_fraud(name1, name2) :− employee(name1, salary1, tax1),

employee(name2, salary2, tax2),

salary2 > salary1, tax2 < tax1.

FIGURE 4.5. Tax Program

The next synthesised benchmark represents a best-case scenario for the R-Tree strategy. For an exper-

imental data set, we generate employees earning a salary in the range 30, 000 to 30, 000 + n that pay

30% of their salary as tax. We then introduce a single anomalous record of an employee committing tax

fraud.

Index Selection Strategy Number of B-Tree Indexes Number of R-Tree Indexes
Base 2 0

R-Tree SPS 1 1
TABLE 4.12. Number of Indexes (Tax)

Table 4.14 shows that exactly like the previous two benchmarks, an R-Tree index covers the relation

queried with inequality constraints and the B-Tree index covers the other.

Number of Employees Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (R-Tree SPS) (Base) (R-Tree SPS)

20000 7640 9284 1.04 0.06
40000 10184 13572 3.65 0.12
60000 13040 17956 10.32 0.19
80000 15776 22368 28.56 0.25
100000 19140 27060 61.28 0.32

TABLE 4.13. Maximum Resident Set Size (KB) and Evaluation Time (s) (Tax)
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The figure above illustrates the least memory overhead for R-Tree SPS using between 22% and 42%

more memory than the original scheme. The relative lack of memory overhead for R-Tree SPS in this

benchmark compared to Base is likely because less filtering of tuples is done in memory, as irrelevant

tuples are not visited during the search over the R-Tree index. Overall, Base is still superior in terms of

memory consumption.
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The above figure demonstrates a scenario where R-Tree SPS performs outstandingly well compared

to Base providing an evaluation time speedup ranging from 17.33× to 191.5× the evaluation time of

Base. Since R-Trees can use both inequality constraints in the indexed scan, they can evaluate the search

dramatically faster than Base, which naïvely generates all pairs of employees and filters them on the

inequality constraints. As the input size increases, the speedup increases linearly for the R-Tree index.

The R-Tree SPS scheme is much better than the Base scheme, outperforming it by orders of magnitude

with at most a 41% increase in memory consumption.

.decl A(x : number, y : number, z : number)

.input A

.printsize A

A(0, 0, 0) :− A(x, _, _), x > 0.

A(0, 0, 0) :− A(_, y, _), y > 0.

A(0, 0, 0) :− A(_, _, z), z > 0.

FIGURE 4.6. Insert Program with Arity n = 3

The Insert program is our final synthesised benchmark. The relation A has arity n with inequality

primitive searches on each attribute. A fixed set of 10, 000, 000 shuffled facts for A in the range

[0, (10, 000, 000)1/n]n are inserted into the relation to illustrate the insertion performance of each tech-

nique.

Index Selection Strategy Number of B-Tree Indexes Number of R-Tree Indexes
Base 3 0

R-Tree SPS 0 3
TABLE 4.14. Number of Indexes (Insert)

Due to the semi-naïve evaluation strategy, when recursive rules occur in the program, 3 indexes must be

constructed for the relation, A, deltaA and newA. We note that newA only ever contains IDB tuples,

therefore the overall storage requirement is 10, 000, 000 tuples on each of A and deltaA.
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Arity Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (R-Tree SPS) (Base) (R-Tree SPS)

1 239836 425272 6.69 20.46
2 484584 2109544 10.06 29.60
3 721104 2658072 12.99 36.72
4 1108120 3631748 16.92 59.41
5 1464816 4920528 23.35 97.40
6 1698144 5634816 24.77 118.91

TABLE 4.15. Maximum Resident Set Size (KB) and Evaluation Time (s) (Insert)
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The figure illustrates the memory overhead of R-Tree SPS compared to Base. We observe an overhead

ranging from 1.77× to 4.35×. We can attribute this to two main factors. Firstly, R-Trees have roughly

a 2× memory overhead compared to B-Tree indexes and secondly, the process of forcefully reinserting

tuples with the R* splitting technique materialises more tuples into memory.
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We observe in the above figure, a slowdown ranging from 2.83× to 4.80× that appears to increase as

the arity increases. The observation makes sense given that as the arity increases, the R-Tree has more

difficulty placing tuples into sub-trees without introducing overlap. With more overlap, more splitting

occurs causing further re-insertions at the top of the tree, degrading performance. Overall, the R-Tree

SPS strategy is worse than Base here, evaluation time slowdown of up to 4.8× as well as a significant

memory overhead of over 4×.

Our synthesised benchmarks have showcased a dramatic improvement in evaluation time over Base

for a number of synthesised benchmarks with the R-Tree SPS technique. However, it is essential that

our technique can accelerate the evaluation time performance of real-world programs when selective

inequality constraints are present and not hamper performance when less selective inequality constraints

are present. Therefore, we now shift attention to three real-world benchmarks: DOOP (Antoniadis et al.,

2017; Bravenboer and Smaragdakis, 2009), Amazon’s Virtual Private Cloud (VPC) Network Security

Analysis and the Datalog Disassembler (DDISASM) (Antoniadis et al., 2017).

Index Selection Strategy Number of B-Tree Indexes Number of R-Tree Indexes Compilation Time
Base 594 0 140.8

R-Tree SPS 585 8 147.7
TABLE 4.16. Number of Indexes and Compilation Time (s) (DOOP)
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We observe that for DOOP, there are 585 B-Tree indexes and 8 R-Tree indexes constructed by R-Tree

SPS. The lack of R-Tree indexes indicates that very few relations have inequality primitive searches. We

note that the total number of indexes used by R-Tree SPS is one less than Base, indicating that a single

R-Tree index replaced a relation which Base would cover with two B-Tree indexes.

We observe a 5% increase in the overall compilation time for DOOP using R-Tree SPS. Boost’s R-

Tree index relies heavily on the evaluation of many layers of templates, constructing the index with

template classes provided by other Boost dependencies. Therefore, R-Trees add to the compilation

time of the generated program and add time to the linking stage for the binary to resolve these extra

dependencies. Overall a 5% overhead in compilation time is not very significant since programs are

infrequently compiled and once compiled, run frequently with different inputs.

Fact Folder Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (R-Tree SPS) (Base) (R-Tree SPS)

antlr 2046448 2078336 40.81 776.81
bloat 1445884 1464600 27.33 294.63
chart 2149824 2182168 42.85 880.39

eclipse 1443628 1461236 29.31 252.29
fop 2120208 2151592 41.75 468.3

hsqldb 2189184 2223080 44.41 403.04
jython 1627420 1649008 31.53 360.31
luindex 1443508 1461864 27.83 277.00
lusearch 1441388 1459636 27.85 274.61

pmd 2089748 2120232 41.61 493.73
xalan 2140004 2170860 43.06 599.98
TABLE 4.17. Maximum Resident Set Size (KB) and Evaluation Time (s) (DOOP)

The figure above highlights that R-Tree SPS has an insignificant memory overhead compared to the

original scheme. This indicates that the few relations which have inequality primitive searches do not

contain a large number of tuples, otherwise the approximate 2× memory overhead of maintaining an

R-Tree index would be visible.
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The figure illustrates the slowdown of the R-Tree SPS technique as it degrades performance heavily in

DOOP compared to Base. The technique slows down the evaluation time by 8.61× to 20.55×. In the

worst-case, searching an R-Tree takes time proportional to the size of the relation. B-Tree indexes, by

comparison, are specialised for each search, consuming time proportional to the size of the output of

the search. Therefore, when the relation sizes are large, and the output size of searches is small, the

performance of the R-Tree is significantly worse than a B-Tree index.
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Given that the R* splitting strategy organises the data within the R-Tree effectively, the poor search

performance indicates that the performance limitations are inherent to the R-Tree data structure. The

performance of indexed searches is most crucial when the loop schedule is optimally selected, as is the

case in DOOP, the effect of the R-Tree’s slow evaluation of these indexed searches becomes apparent.

DOOP is sufficient evidence to conclude that the R-Tree SPS strategy is not robust, causing dramatic

slowdown if the R-Tree covers crucial spatial primitive searches. Overall, Base is far superior to R-Tree

SPS as it is roughly an order of magnitude faster across all fact folders for DOOP.

Index Selection Strategy Number of B-Tree Indexes Number of R-Tree Indexes
Base 304 0

R-Tree SPS 302 1
TABLE 4.18. Number of Indexes (VPC N-1075 sec1)

Index Selection Strategy Number of B-Tree Indexes Number of R-Tree Indexes
Base 315 0

R-Tree SPS 313 1
TABLE 4.19. Number of Indexes (VPC N-1075 sec2)

Index Selection Strategy Number of B-Tree Indexes Number of R-Tree Indexes
Base 298 0

R-Tree SPS 296 1
TABLE 4.20. Number of Indexes (VPC N-1075 sec3)

Tables 4.18, 4.19 and 4.20 showcase the number of constructed indexes for each technique. Across all

analyses (sec1, sec2 and sec3), only a single R-Tree index is constructed by R-Tree SPS, indicating

that inequality primitive searches are extremely sparse in VPC. We observed the same behaviour across

VPC-2340, VPC-3500, VPC-3511 and VPC-9087, so we omit these tables for brevity. Overall, we ex-

pect little to no effect on VPC from using the R-Tree SPS strategy.
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Program Compilation Time Compilation Time Compilation Time Overhead over Base
(Base) (R-Tree SPS) (Overhead over Base)

VPC N-1075 sec1 127.1 130.0 1.00
VPC N-1075 sec2 134.6 136.0 1.01
VPC N-1075 sec3 126.0 129.0 1.02
VPC N-2340 sec1 52.64 55.20 1.05
VPC N-2340 sec2 55.38 60.57 1.09
VPC N-2340 sec3 52.04 54.93 1.06
VPC N-3500 sec1 128.54 132.45 1.03
VPC N-3500 sec2 134.98 137.88 1.02
VPC N-3500 sec3 128.67 130.98 1.02
VPC N-3511 sec1 127.98 136.88 1.07
VPC N-3511 sec2 132.49 138.11 1.04
VPC N-3511 sec3 136.95 139.86 1.02
VPC N-9087 sec1 127.59 130.28 1.02
VPC N-9087 sec2 133.14 136.51 1.03
VPC N-9087 sec3 128.14 131.62 1.03

TABLE 4.21. Compilation Time (s) of Index Selection Schemes (VPC)

The above figure illustrates the compilation time overhead of R-Tree SPS relative to Base. We find

that the overhead is at most an added 9% to the overall compilation time. We can attribute this to the

extra time to compile the single R-Tree index for VPC. Overall, a compilation time overhead of 9% is

noticeable but not significant for the R-Tree SPS strategy.

Network and Analysis Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (R-Tree SPS) (Base) (R-Tree SPS)

VPC N-1075 (sec1) 1631804 1632692 150.97 154.01
VPC N-1075 (sec2) 1962056 1962732 137.55 139.62
VPC N-1075 (sec3) 4195416 4195884 168.91 169.07
VPC N-2340 (sec1) 727508 727980 202.76 210.40
VPC N-2340 (sec2) 727628 727988 198.84 201.37
VPC N-2340 (sec3) 727060 727476 207.15 196.67
VPC N-3500 (sec1) 7706920 7707700 1862.17 1826.11
VPC N-3500 (sec2) 14359900 14360692 1605.51 1588.42
VPC N-3500 (sec3) 7497628 7498320 1619.32 1632.57
VPC N-3511 (sec1) 7706952 7707644 1846.28 1822.34
VPC N-3511 (sec2) 14359824 14360724 1618.12 1579.51
VPC N-3511 (sec3) 7497612 7498472 1639.53 1632.97
VPC N-9087 (sec1) 6506056 6506904 1814.89 1790.38
VPC N-9087 (sec2) 11633248 11634224 1557.48 1522.85
VPC N-9087 (sec3) 7567900 7568980 1587.98 1593.71

TABLE 4.22. Maximum Resident Set Size (KB) and Evaluation Time (s) (VPC)
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Table 4.22 details the memory usage of the analyses with each index selection scheme. We observe that

across all networks, the memory overhead of of the new strategy is less than 1%. We can conclude that

the R-Tree index constructed to cover the inequality primitive searches in VPC does not contain many

tuples. Overall, since the memory overhead is not significant, there is no harm in adopting the R-Tree

SPS strategy over Base.

The table also showcases the absolute evaluation time of the network security analysis for all three

analyses across multiple networks. We find that the R-Tree SPS strategy has little effect on the overall

evaluation time. We observe a speed-up of up to 5% with R-Tree SPS as well as slowdowns of up

to 4%. Since a domain-specific language generates the Datalog program for each network analysis,

poorly scheduled loop nests are responsible for the majority of the evaluation time. Furthermore, there

are few inequality constraints in VPC, resulting in only a single constructed R-Tree index. Therefore,

the different indexing strategies do not significantly impact evaluation time. Overall, Base offers more

consistent performance than R-Tree SPS and is the better strategy for VPC.

Index Selection Strategy Number of B-Tree Indexes Number of R-Tree Indexes Compilation Time
Base 692 0 178.7

R-Tree SPS 638 34 187.7
TABLE 4.23. Number of Indexes and Compilation Time (s) (DDISASM)

Unlike previous benchmarks, Table 4.23, makes clear that R-Tree indexes cover a much more significant

number of relations in DDISASM. We can attribute this to the larger number of inequality primitive

searches present in DDISASM compared to other benchmarks. Therefore, the effect of the R-Tree SPS

strategy should be very apparent compared to previous benchmarks. Interestingly, the total number of

indexes constructed by R-Tree SPS is 20 less than Base. We can attribute this difference to the fact that

each individual R-Tree index replaces a cluster of B-Tree indexes containing multiple B-Trees.

We find by Table 4.23 that there is a 5% increase in compilation time using the R-Tree SPS strategy

compared to Base. As with DOOP, we can explain this difference as the time required to synthesise the

34 R-Tree indexes, compile the generated R-Tree indexes in the C++ source and link against Boost’s

dependencies. An overhead of 5% is not considered significant for the R-Tree since users compile

Datalog programs infrequently and execute them with different inputs frequently.
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Fact Folder Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (R-Tree SPS) (Base) (R-Tree SPS)

cactusADM 445400 564808 10.21 24.87
calculix 1004012 1304052 26.61 81.05
dealII 609620 1447632 47.71 1198.62

gamess 5286504 6899952 160.2 990.38
gcc 2595832 1471208 177.88 Time Out

GemsFDTD 278572 352816 9.38 18.9
gobmk 609556 1446812 47.55 1197.16

gromacs 569472 756468 13.34 40.96
h264ref 330768 428424 9.05 34.07
omnetpp 346472 410600 16.12 2315.31
perlbench 1328780 2158668 25.79 98.62

povray 1400756 2249388 19.07 62.10
sphinx3 2795504 3562080 81.17 607.27

tonto 22435464 23417856 522.41 1628.63
wrf 2796084 3562240 81.40 605.02

xalancbmk 2795532 3562180 80.70 604.41
TABLE 4.24. Maximum Resident Set Size (KB) and Evaluation Time (s) (DDISASM)
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The figure highlights the memory overhead of R-Tree SPS for DDISASM. We find that the indexing

strategy results in a memory overhead ranging from an additional 4% to up to a 137% increase in

memory usage. Considering that less than 5% of all indexes are R-Tree indexes, this indicates that

these few indexes contain large numbers of tuples. Overall, the additional memory overhead is fairly

significant here, and the Base strategy would be preferable unless R-Tree SPS can deliver considerable

speedups in evaluation time.
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The figure illustrates the slowdown of the R-Tree index for the DDISASM benchmark. The slowdown

ranges from 2.01× to 143.63× in the worst case and timing out for the GCC benchmark (exceeding 3

hours). As with DOOP, the R-Tree SPS strategy does not accelerate performance, but instead it consis-

tently degrades performance. Even ignoring the 2× memory overhead, R-Tree SPS is utterly infeasible

for real-world benchmarks, causing orders of magnitude levels of a slowdown compared to Base.

Overall, even though R-Tree SPS shows considerable speed-ups for synthesised benchmarks, it results

in dramatic slowdowns in real-world benchmarks, including both DOOP and DDISASM. Therefore,
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Base is far superior to R-Tree SPS as an index selection strategy for the evaluation of real-world Datalog

programs.

4.3 (Q3) B-Tree SPS vs Base

In the previous section, we concluded that R-Tree SPS failed to accelerate the performance of inequality

primitive searches in real-world programs compared to Base. The poor evaluation performance is a

consequence of the lack of specialisation of R-Tree indexes, resulting in searches that may consume

time proportional to the size of the relation. Therefore, we now explore B-Tree SPS as an alternative

index selection strategy, using B-Tree indexes which offer strong search performance, bounding the

search complexity by the size of the search output.

Index Selection Strategy Number of B-Tree Indexes
Base 2

B-Tree SPS 2
TABLE 4.25. Number of B-Tree Indexes (Nearby Naturals)

For the Nearby Naturals benchmark, Table 4.25, showcases that both B-Tree SPS and Base, construct a

single B-Tree index to cover each relation. Since, the B-Tree SPS index selection technique is efficient

at packing many spatial primitive searches into long search chains, even though there are extra spatial

primitive searches to be indexed, no extra B-Trees are required to cover them. Therefore, since the

number of B-Tree indexes for each technique is identical, we expect zero compilation time or memory

overhead of B-Tree SPS compared to Base.

Number of Naturals Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (B-Tree SPS) (Base) (B-Tree SPS)

20000 8952 8952 0.62 0.05
40000 12856 12980 2.36 0.09
60000 17148 16968 5.26 0.13
80000 21164 21312 9.28 0.18
100000 25212 25156 14.46 0.23

TABLE 4.26. Maximum Resident Set Size (KB) and Evaluation Time (s) (Nearby Naturals)

The table above details the memory usage of B-Tree SPS and Base. We find that B-Tree SPS shows zero

memory overhead up to experimental error (within 1%). The lack of memory overhead is intuitive since
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no extra B-Trees need to be constructed by B-Tree SPS to cover the new inequality primitive searches

(as seen in Table 4.25).
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The figure above showcases the B-Tree SPS technique’s significant speedups of 12.40× to 62.86× over

the Base selection scheme. By using the inequality constraint in the indexed scan, the B-Tree SPS

technique dramatically improves performance with the evaluation time speedup over Base doubling as

the input size doubles. We can attribute this dramatic speedup with B-Tree SPS to the eager pruning of

the relation’s tuples with inequality constraints as opposed to Base’s naïve generate and test approach.

Overall, B-Tree SPS is superior to Base as it is dramatically faster in terms of evaluation time and

requires zero extra memory consumption.

Index Selection Strategy Number of B-Tree Indexes
Base 2

B-Tree SPS 2
TABLE 4.27. Number of Indexes (Nearby Points)

As with the previous benchmark, B-Tree SPS uses the same number of B-Tree indexes to cover the extra

inequality primitive searches present in the benchmark.
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Number of Points Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (B-Tree SPS) (Base) (B-Tree SPS)

20000 78100 78140 1.36 0.74
40000 154900 154956 3.93 1.56
60000 229872 230128 7.64 2.41
80000 307340 307236 12.58 3.32
100000 385888 385676 19.01 4.23

TABLE 4.28. Maximum Resident Set Size (KB) and Evaluation Time (s) (Nearby Points)

As with the previous benchmark, since the same number of B-Tree indexes are constructed for both B-

Tree SPS and Base, we observe effectively no difference in memory usage between the two techniques.
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Much like the previous benchmark, we observe tremendous speedups over Base, ranging from 1.83× to

4.49×. The speedup increases further as the input size increases. Ultimately, B-Tree SPS is the clear

choice compared to Base, consistently outperforming Base by large margins in evaluation time with

effectively zero memory overhead.

Index Selection Strategy Number of B-Tree Indexes
Base 2

B-Tree SPS 2
TABLE 4.29. Number of Indexes (Tax)
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As before, the number of B-Tree indexes constructed by B-Tree SPS is identical to that of Base, since a

single search chain can cover all simple spatial primitive searches.

Number of Employees Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (B-Tree SPS) (Base) (B-Tree SPS)

20000 7640 7556 1.04 0.42
40000 10184 10272 3.65 1.88
60000 13040 13328 10.32 4.54
80000 15776 15964 28.56 9.10
100000 19140 19324 61.28 17.76

TABLE 4.30. Maximum Resident Set Size (KB) and Evaluation Time (s) (Tax)

Much like the previous benchmarks, there is zero memory overhead up to experimental error for the

B-Tree SPS strategy since no new indexes need to be constructed relative to Base.
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The above figure demonstrates a scenario where B-Tree SPS can accelerate performance fairly sig-

nificantly compared to Base, but not as dramatically as previous benchmarks. B-Tree indexes cannot

natively evaluate searches multiple attributes with inequality constraints and therefore, the indexed scan

can only compute efficiently, employees with a greater salary or a lower tax but not both. The resultant

set of pairs is then filtered manually. Since each inequality constraint individually is not very selective,

less pruning of the search space can be done by the B-Tree SPS technique, with the complexity of the
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evaluation being O(n2). However, as with prior benchmarks the B-Tree SPS benchmark is far superior

to Base, still outperforming the Base strategy by significant margins with zero memory overhead.

Index Selection Strategy Number of B-Tree Indexes
Base 3

B-Tree SPS 3×Arity
TABLE 4.31. Number of Indexes (Insert)

Due to semi-naïve evaluation we require three relations A, deltaA and newA. For each of these relations,

the B-Tree SPS strategy must maintain n indexes where n is the arity of relation. A B-Tree must be

constructed in order to efficiently support each inequality primitive search and since the searches are

done on separate attributes, they cannot share an index. By contrast, the Base strategy does not cover

any of these inequality primitive searches and only a single B-Tree index is sufficient to hold the tuples

for A.

Arity Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (B-Tree SPS) (Base) (B-Tree SPS)

1 239836 239760 6.69 7.00
2 484584 1442616 10.06 29.60
3 721104 3189128 12.99 36.72
4 1108120 10504848 16.92 59.41
5 1464816 12019220 23.35 97.40
6 1698144 13183000 24.77 118.91

TABLE 4.32. Maximum Resident Set Size (KB) and Evaluation Time (s) (Insert)
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There is a significant memory overhead as shown in the above figures when using B-Tree SPS. Since

n× more B-Tree indexes are required to cover all inequality primitive searches compared to Base, the

overall memory overhead is considerable. The memory overhead is significant enough that the B-Tree

SPS strategy would potentially cause the evaluation to crash for large enough input sizes and Base is

much more preferable.
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The above figure showcases a worst-case scenario for the B-Tree SPS strategy. There is a clear linear

relationship between the arity of the relation and the evaluation time slowdown over Base. Since the

B-Tree SPS strategy must maintain n× the number of B-Tree indexes of Base and the workload is

entirely comprised of insertions; we observe an n× slowdown. Overall, we can characterise the worst-

case scenario of B-Tree SPS as when there are large numbers of non-overlapping inequality primitive

searches, and the workload is insertion heavy. Although, this scenario is uncommon in practice, clearly

for this benchmark, the Base strategy is far superior as it does not incur a large memory overhead or

evaluation time slowdown.

We have found that the B-Tree SPS strategy demonstrates dramatic speedups while incurring minimal

memory overhead for all synthesised benchmarks bar Insert, an unrealistic benchmark designed to high-

light the theoretical weaknesses of the technique. However, most crucial to the adoption of B-Tree SPS

as a replacement index selection strategy compared to Base is its performance for real-world bench-

marks. Therefore, we now shift our attention to real-world applications, considering the evaluation time

speedup of B-Tree SPS compared to the memory overhead and compilation time increase.

Index Selection Strategy Number of B-Tree Indexes Compilation Time
Base 594 140.8

B-Tree SPS 594 141.5
TABLE 4.33. Number of Indexes and Compilation Time (s) (DOOP)

Table 4.33, showcases the number of B-Tree indexes for DOOP, a large scale, real-world benchmark.

The same number of B-Tree indexes can be used by B-Tree SPS to cover all of the extra inequality primi-

tive searches introduced. Although only 0.6% of the search operations in DOOP are inequality primitive

searches, the fact that B-Tree SPS creates no additional B-Tree indexes gives strong guarantees. We can

be confident that there is zero overhead concerning the compilation time or the memory overhead. Most

importantly, however, even if the evaluation time does not decrease, it will not be noticeably larger as no

extra B-Tree indexes need to be maintained to speed up inequality primitive searches.

The above table illustrates that the increase in compilation time of B-Tree SPS compared to Base is

zero within the range of experimental error (1%). From Table 4.33, the reasoning here is that B-Tree

SPS does not synthesise any extra indexes and therefore no extra time is required to generate the C++

program or compile it. There is some overhead with regards to the index selection overhead since there

are inequality primitive searches not present with the Base strategy. However, the index selection phase
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consumes less than 1% of the overall compilation time and so we can dismiss this overhead. Overall,

the B-Tree SPS technique is superior to Base in that it has negligible overhead to the compilation time

while covering more searches.

Fact Folder Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (B-Tree SPS) (Base) (B-Tree SPS)

antlr 2046448 2046560 40.81 41.20
bloat 1445884 1446020 27.33 26.96
chart 2149824 2149840 42.85 43.14

eclipse 1443628 1443788 29.31 29.37
fop 2120208 2120476 41.75 41.89

hsqldb 2189184 2189288 44.41 44.35
jython 1627420 1627544 31.53 31.77
luindex 1443508 1443572 27.83 27.75
lusearch 1441388 1441260 27.85 27.94

pmd 2089748 2089940 41.61 41.77
xalan 2140004 2139920 43.06 42.55
TABLE 4.34. Maximum Resident Set Size (KB) and Evaluation Time (s) (DOOP)

The above table showcases the experimental memory overhead of B-Tree SPS. Since SOUFFLÉ con-

structs no additional B-Tree indexes, no extra memory is needed since both B-Tree SPS and Base main-

tain the same number of B-Tree indexes.

In terms of evaluation time, we observe not much improvement and not much overhead, either. We see

no effect within the margin of experimental error (1%), indicating that no crucial inequalities exist in

DOOP.

Index Selection Strategy Number of B-Tree Indexes
Base 304

B-Tree SPS 304
TABLE 4.35. Number of Indexes (VPC N-1075 sec1)

Index Selection Strategy Number of B-Tree Indexes
Base 315

B-Tree SPS 315
TABLE 4.36. Number of Indexes (VPC N-1075 sec2)



4.3 (Q3) B-TREE SPS VS BASE 94

Index Selection Strategy Number of B-Tree Indexes
Base 298

B-Tree SPS 298
TABLE 4.37. Number of Indexes (VPC N-1075 sec3)

Tables 4.35, 4.36 and 4.37 illustrate that zero extra B-Tree indexes are constructed by the B-Tree SPS

technique. Again, with no extra B-Trees created, there are strong guarantees on the compilation time,

memory overhead and performance overhead of B-Tree SPS relative to Base.

Program Compilation Time Compilation Time Compilation Time
(Base) (B-Tree SPS) (Overhead over Base)

VPC N-1075 sec1 127.1 129.9 1.00
VPC N-1075 sec2 134.6 136.0 1.01
VPC N-1075 sec3 126.0 126.0 1.01
VPC N-2340 sec1 52.64 52.49 1.00
VPC N-2340 sec2 55.38 56.20 1.01
VPC N-2340 sec3 52.04 51.83 1.01
VPC N-3500 sec1 128.54 130.68 1.02
VPC N-3500 sec2 134.98 135.83 1.01
VPC N-3500 sec3 128.67 129.61 1.01
VPC N-3511 sec1 127.98 130.47 1.02
VPC N-3511 sec2 132.49 133.90 1.01
VPC N-3511 sec3 136.95 137.25 1.00
VPC N-9087 sec1 127.59 127.86 1.00
VPC N-9087 sec2 133.14 135.38 1.02
VPC N-9087 sec3 128.14 129.97 1.01

TABLE 4.38. Compilation Time (s) of Index Selection Schemes (VPC)

As with DOOP, since the number of B-Tree indexes is identical for both B-Tree SPS and Base, the

compilation time is roughly within the margin of experimental error. Therefore, there is no disadvantage

in terms of compilation time overhead to using the B-Tree SPS strategy.
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Network and Analysis Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (B-Tree SPS) (Base) (B-Tree SPS)

VPC N-1075 (sec1) 1631804 1631940 150.97 151.27
VPC N-1075 (sec2) 1962056 1961916 137.55 139.07
VPC N-1075 (sec3) 4195416 4195248 168.91 172.47
VPC N-2340 (sec1) 727508 727340 202.76 207.76
VPC N-2340 (sec2) 727628 727436 198.84 197.08
VPC N-2340 (sec3) 727060 727160 207.15 198.81
VPC N-3500 (sec1) 7706920 7706864 1862.17 1888.08
VPC N-3500 (sec2) 14359900 14359764 1605.51 1586.53
VPC N-3500 (sec3) 7497628 7497548 1619.32 1642.51
VPC N-3511 (sec1) 7706952 7707228 1846.28 1878.21
VPC N-3511 (sec2) 14359824 14359612 1618.12 1591.3
VPC N-3511 (sec3) 7497612 7497624 1639.53 1632.26
VPC N-9087 (sec1) 6506056 6505960 1814.89 1810.58
VPC N-9087 (sec2) 11633248 11633324 1557.48 1533.89
VPC N-9087 (sec3) 7567900 7568032 1587.98 1577.34

TABLE 4.39. Maximum Resident Set Size (KB) and Evaluation Time (s) (VPC)

Table 4.39 details the memory used by the B-Tree SPS strategy and the Base strategy for VPC. We find

that the memory usage is within the range of experimental error (1%) which aligns with our expectation

as both techniques synthesise the same number of B-Tree indexes. Therefore, there is no harm in opting

for the B-Tree SPS strategy over the Base strategy.

The above figures detail the evaluation time of the VPC network analysis using the B-Tree SPS technique

with different analyses performed across different networks. We find that VPC is up to 4% faster with the

B-Tree SPS technique relative to Base but also up to 2% slower than Base. Given that the same number

of B-Tree indexes are used by each method, it is likely that our observations are due to experimental

variance. Overall, both B-Tree SPS and Base have no significant difference in compilation time or

memory overhead and there is no clear winner in terms of evaluation speed. Therefore, there is no harm

in opting for the B-Tree SPS strategy compared to Base.

Index Selection Strategy Number of B-Tree Indexes Compilation Time
Base 692 178.7

B-Tree SPS 698 190.2
TABLE 4.40. Number of Indexes and Compilation Time (s) (DDISASM)
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Table 4.40, showcases that DDISASM is the first benchmark where new B-Tree indexes are needed to

cover all of the extra inequality primitive searches. Since only 3.1% of the search operations in DDIS-

ASM are inequality primitive searches, some relations are dense enough with new inequality primitive

searches that extra search chains are required to cover them. However, B-Tree SPS builds only 6 ad-

ditional indexes in order to cover these new searches, less than a 1% increase in the total number of

indexes. Therefore we expect, B-Tree SPS will incur a compilation time overhead to construct the

additional indexes and memory overhead to maintain them.

The B-Tree SPS technique represents the most considerable compilation time overhead observed so far,

adding an overhead of 6% to Base and increasing the overall compilation time from 178.7s to 190.2s.

Since the index selection phase of the compilation pipeline consumes less than 1% of the total time,

we can conclude that this overhead is a consequence of constructing the 6 additional B-Tree indexes

necessary to cover the extra inequality primitive searches in the program. Constructing each new B-Tree

index requires evaluation of templates for each lexicographical order, therefore adding to the overhead as

GCC compiles the C++ program. Overall, 6% is not a significant overhead of the B-Tree SPS technique

and is acceptable to use instead of Base.

Fact Folder Memory Usage Memory Usage Evaluation Time Evaluation Time
(Base) (B-Tree SPS) (Base) (B-Tree SPS)

cactusADM 445400 445140 10.21 9.53
calculix 1004012 1006824 26.61 25.15
dealII 609620 610232 47.71 27.22

gamess 5286504 5291832 160.2 147.31
gcc 2595832 2592636 177.88 76.68

GemsFDTD 278572 278200 9.38 9.16
gobmk 609556 610424 47.55 27.10

gromacs 569472 570452 13.34 12.54
h264ref 330768 331548 9.05 8.51
omnetpp 346472 347028 16.12 15.17
perlbench 1328780 1327216 25.79 23.76

povray 1400756 1399564 19.07 17.89
sphinx3 2795504 2803804 81.17 79.49

tonto 22435464 22442636 522.41 513.13
wrf 2796084 2803628 81.40 77.34

xalancbmk 2795532 2803772 80.70 77.11
TABLE 4.41. Maximum Resident Set Size (KB) and Evaluation Time (s) (DDISASM)
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Table 4.41 highlights the lightweight nature of the B-Tree SPS strategy. Although 6 additional indexes

had to be constructed, relative to those used by Base, we observe less than a 1% memory overhead

compared to Base. We observed that DDISASM has large relations with inequality primitive searches

when evaluating the R-Tree SPS technique, yet we observe nearly zero memory overhead with B-Tree

SPS. Among all the relations with inequality primitive searches, some of them may be large, and some

may be small. Since there is negligible memory overhead for B-Tree SPS then for the large relations

with inequality primitive searches, it must use the same number of B-Tree indexes as Base. In other

words, the 6 additional indexes constructed by B-Tree SPS only cover smaller relations with inequality

primitive searches. Ultimately, the B-Tree SPS technique incurs negligible memory overhead, making

it the superior strategy to Base as it can accelerate the evaluation time of inequality primitive searches

dramatically.
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The above figure illustrates the speedup of the B-Tree SPS indexing scheme. The results demonstrate an

impressive speedup accelerating evaluation time by up to 2.32×. The observation validates our original

hypothesis that inequality primitive searches were very unoptimised in SOUFFLÉ compared to equality

primitive searches. Notably, the technique is robust and shows no degradation in performance across all
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input fact folders. The B-Tree SPS strategy is superior to Base, demonstrating dramatic speedups with a

negligible overhead in compilation time and memory usage.

4.4 (Q4) R-Tree SPS vs B-Tree SPS

We have experimented using a range of constructed and real-world benchmarks to determine the perfor-

mance characteristics of both the R-Tree SPS and B-Tree SPS indexing strategies.

In synthesised benchmarks, we observed effectively zero overhead in terms of memory using B-Tree

SPS and up to 2× more memory usage for the R-Tree SPS technique. We showcased that both of the

proposed strategies could significantly speed up the evaluation time of synthesised programs, noting that

B-Tree SPS provided approximately 2× higher performance than R-Tree SPS for almost all synthesised

benchmarks. We note that the "Insert" benchmark, a pathological program designed to disadvantage

the B-Tree SPS strategy, illustrated a dramatic memory overhead and an n× evaluation time slowdown.

However, since this benchmark would require a heavy insertion workload, on a relation with large num-

bers of inequality primitive searches using separate attributes, it is not a scenario that we expect ever

to occur in practice. Overall, ignoring this pathological scenario, B-Tree SPS beats out R-Tree SPS

for synthesised benchmarks, proving to be superior in terms of memory overhead and evaluation time

speedup.

For real-world benchmarks, we observed that both techniques show negligible compilation time over-

head, with R-Tree SPS increasing compilation time by at most 9% and B-Tree SPS with an overhead

of 6%. Regarding memory usage, the R-Tree SPS technique consumes up to 137% more memory than

Base, as shown in the DDISASM benchmark. By contrast, B-Tree SPS is far more lightweight, incurring

zero memory overhead for both DOOP and VPC, since it uses the same number of B-Tree indexes as

Base and increasing the memory overhead by less than 1% for DDISASM. However, when observing

the evaluation time, the R-Tree SPS technique heavily degraded performance in real-world programs,

evaluating up to 20.55× slower than Base in DOOP and up to 143.63× slower than Base in DDISASM.

The B-Tree SPS strategy, however, dramatically improved evaluation time in the DDISASM benchmark,

accelerating evaluation time by up to 2.32× relative to Base, demonstrating its ability to speed up in-

equality primitive searches significantly. Furthermore, the B-Tree SPS technique proved to be far more

robust than R-Tree SPS with no degradation in performance within the margin of experimental error.
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Overall, the R-Tree SPS strategy is not robust and not safe to implement as a general index selec-

tion strategy as it can heavily degrade performance in real-world benchmarks. By contrast, the B-Tree

SPS strategy is highly robust and showcases dramatic improvements in evaluation time for real-world

benchmarks with negligible overhead compared to Base in both compilation time and memory usage.

Therefore, we can conclude that the B-Tree SPS is a better index selection strategy than R-Tree SPS for

real-world Datalog programs.



CHAPTER 5

Conclusion and Future Work

Crucial to the high performance of Datalog engines is the choice of indexes to store logical relations

and accelerate the evaluation of search operations. The state of the art technique in the literature uses

an automatic index selection technique to select a minimal cluster of B-Tree indexes to accelerate all

equality primitive searches on a Datalog relation. However, for inequality primitive searches, their

evaluation is performed naïvely without using an index, consuming excessive amounts of time for crucial

logic programs.

In this thesis, we have extended the state of the art auto-index selection technique to accelerate both

equality and inequality primitive searches. We introduced the notion of a spatial primitive as an ab-

stract device to encapsulate both equality and inequality primitive searches. We showed an equivalence

between the semantics of Datalog searches as spatial primitive searches and orthogonal range queries.

We then explored high-performance data structures for evaluating orthogonal range queries and selected

the R-Tree index as the most appropriate choice for a Datalog engine. We then presented two index

selection strategies for evaluating spatial primitive searches in practice and implemented prototypes of

both approaches in SOUFFLÉ.

The first approach, R-Tree SPS, builds an R-Tree index whenever inequality primitive searches are

applied to Datalog relations and defers to the existing auto-index selection strategy for all other relations.

The approach is feasible for synthesised benchmarks but is dramatically slower than the state of the art

technique when evaluating real-world Datalog programs.

The second is B-Tree SPS, extending the existing auto-index selection technique to cover every simple

spatial primitive search. The new strategy is the primary contribution of our research, showcasing the

ability to dramatically accelerate the evaluation of inequality primitive searches without the need for any

user intervention.

100
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Our empirical experiments demonstrated the feasibility of B-Tree SPS on real-world Datalog programs,

accelerating the evaluation-time of DDISASM by up to 2.32×, consuming less than 1% additional mem-

ory and incurring only a 6% increase in compilation time compared to the state-of-the-art. For other

real-world Datalog programs such as DOOP and VPC, B-Tree SPS was robust, with no practical effect

on compilation time, memory overhead or evaluation time. Overall B-Tree SPS is a robust and light-

weight auto-index selection scheme, either matching or dramatically improving real-world benchmarks

while R-Tree SPS fails to meet real-world demands.

5.1 Future Work

There are many areas of future work to explore, both regarding the practical applications of the new

index selection technique and other strategies to improve the evaluation of logic programs.

5.1.1 Efficient Evaluation of Min/Max Aggregates

Aggregate functions perform a calculation on one or more values and return a single value. Aggregate

functions are popular language extensions used in relational databases such as MySQL and PostgreSQL

but are also common in Datalog engines including SOUFFLÉ and LogicBlox. Common aggregate func-

tions include count, sum, average,min and max.

Consider for example the following aggregate expression in SOUFFLÉ:

B(y) :− y = sum z : A(0, z).

We express in a declarative manner that we wish to compute the sum of the second attribute of all tuples

in relation A under the constraint that each tuple’s first attribute must have the value of 0. Internally, the

aggregate is evaluated on relation A by first evaluating the spatial primitive search: σx1=0(A), and then

summing the value of the second attribute from the result set.

Two of the most common aggregates, min and max can be accelerated using our extended auto-index

selection technique. Given an aggregate expression of the form:

y = min/max v : A(z1, ..., zk−1, v, zk+1, ..., zn)
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We permit z1, z2, ..., zn to be constants or variables/expressions that are supplied by other atoms in the

rule. We also note that any variable/expression zi which does not appear elsewhere the rule may be

replaced by an _ to indicate that the attribute value is unused.

Currently to evaluate aggregates of this form, SOUFFLÉ will evaluate the spatial primitive search:

σz1≤x1≤z1, ..., zk−1≤xk−1≤zk−1, zk+1≤xk+1≤zk+1, ..., zn≤xn≤zn(A)

Or more simply:

σx1=z1, ..., xk−1=zk−1, xk+1=zk+1, ..., xn=zn(A)

Firstly, the lower and upper bounds of the range need to be computed which has a worst-case time

complexity of O(log(|A|)). After generating the resulting range, a loop iterates through the resulting

tuples, keeping track of the minimum or maximum value attained by v which consumes O(|σ(A)| +

| log(A)|) time where σ(A) is the set of tuples in relation A satisfying the spatial primitive search.

Therefore, to evaluate aggregate expressions of the above form, the complexity is dominated by iterating

through the range, consuming O(|σ(A)|) time.

A naïve scan of the resulting range for the minimum/maximum value of v is necessary since there is no

defined ordering of tuples and thus any tuple in the range could attain the minimum/maximum value.

However, if we could guarantee that the range is ordered by increasing values of v, then we would

guarantee that the first tuple in the range would attain the minimum value and the last tuple would attain

the maximum. With this guarantee, the range would not require iteration and the lower or upper bound

of the range would satisfy the aggregate, reducing the complexity of evaluating aggregates of this form

to O(| log(A)|).

Therefore, to guarantee this ordering among tuples in the range we add the constraint inf(Dk) ≤ xk ≤

sup(Dk), an inequality constraint that every tuple satisfies trivially, to the spatial primitive search as

follows:

σx1=z1, ..., xk−1=zk−1, inf(Dk)≤xk≤sup(Dk), xk+1=zk+1, ..., xn=zn(A)

Now after introducing an inequality constraint on xk the corresponding search sets will be:

SEQ = {x1, ..., xk−1, xk+1, ..., xn}
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SINEQ = {xk}

Now, our extended index selection strategy guarantees that any index ` covering the search must conform

with SEQ ≺ SINEQ or more simply SEQ ≺ xk. Now for all tuples in the range, the values of their

attributes xi ∈ SEQ are all fixed i.e. xi = zi. Tuples in the range will all compare equal up until the last

attribute of the lex-order xk. Therefore, since the index using ` uses the value of xk to determine the

order of tuples, the range will be ordered by increasing value of xk.

In effect, by expressing the min/max aggregates as spatial primitive searches, we guarantee that their

evaluation is done with an index and is efficient. The advantage of this technique is that adding extra

spatial primitive searches rarely requires the construction of additional indexes for the relation. Even

if adding this new spatial primitive search results in an additional index for the relation, reducing the

complexity of these min/max aggregates fromO(|σ(A)|+ | log(A)|) toO(| log(A)|) is dramatic enough

that it should outweigh the extra maintenance costs of the new index. Overall, implementing this tech-

nique into SOUFFLÉ is a high priority as it can result in the automatic acceleration in the evaluation of

min/max aggregates in a variety of Datalog applications.

5.1.2 Improving Performance of Datalog Provenance

Logic programs are expressed declaratively without specifying the control flow as one would with im-

perative programs. Therefore, unlike imperative programs where debugging can be performed by setting

breakpoints, debugging Datalog programs is considerably more challenging. The state-of-the-art tech-

nique in debugging logic programs is data provenance, providing the origins of a tuple. The technique

works by providing a proof tree, where the leaf level of the proof tree consists of only the derived tuple,

and each level of the tree above it contains the EDB/IDB tuples in the rule bodies used to derive it.

The key idea is that the Datalog engine stores extra information about the derivation of each tuple during

evaluation time. After evaluation time, if the program produces a tuple that should not exist, then the

user can query the Datalog engine for the provenance of the tuple. The Datalog engine will then use the

extra state computed during evaluation time to build a proof tree and present it to the user.

The challenge of practical Datalog provenance for large-scale applications is to have the ability to answer

provenance queries quickly while minimising the overhead during evaluation time. The state-of-the-

art Datalog provenance technique deployed in SOUFFLÉ (Zhao et al., 2020) offers minimal run-time
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overhead of 1.31× and memory-overhead of 1.71×; however, proof construction time for large-scale

benchmarks is quite costly. The crucial cost is to efficiently generate a minimal height proof-tree using

only the small amount of extra state kept during evaluation time. The current evaluation of these queries

for minimum height proof-trees is naïve, considering large numbers of potential tuples that will not

appear in the final proof-tree.

For future work, we aim to integrate the new index selection technique for rules with inequality con-

straints with provenance. The key idea would be to perform the index selection twice: firstly to cover

the queries performed at evaluation time and secondly to speed-up provenance queries. By leveraging

indexes to perform these queries for minimal height proof-trees, we expect a tangible reduction in the

proof-tree construction time.

5.1.3 Index Selection with Partial Indexes

Our index selection technique operates by constructing a cluster of B-Tree indexes to accelerate the

evaluation of all of the spatial primitive searches performed on a Datalog relation. The technique is

geared toward an in-memory Datalog engine, storing tuples of a relation in a clustered index. Therefore,

when querying the index, the satisfying tuples can be retrieved directly without requiring a lookup into

an unclustered in-memory or on-disk table containing the relation’s tuples. It is often the case that only

a single clustered index is required to cover all of the searches performed on a relation. However, if

multiple indexes are required, replica indexes are constructed with different lexicographical orderings.

The key disdvantage of storing replica indexes is that not all of the relation’s attributes require storage

to satisfy the queries on the index. Consider the following Datalog program:
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.decl A(x : number, y : number)

.input A

.decl B(x : number)

.input B

.decl B(x : number)

.output C

C(z) :− B(x), A(x, _).

C(y) :− B(y), A(_, y).

Relation A has two spatial primitive searches corresponding to atoms A(x, _) and A(_, y). Every rela-

tion in a Datalog program also has an added spatial primitive search on all of its attributes. In this case,

the search would correspond to the A(x, y). The search is an existence check to determine whether a

tuple already exists in a relation before insertion. If the tuple already exists then the tuple is not inserted

in order to maintain the set property of Datalog relations. Therefore, the search sets {x1}, {x2} and

{x1, x2} represent spatial primitive searches on the first, second and on both attributes respectively. Two

indexes are required to cover all of these searches on relation A with a possible set of indexes being

`1 = x1 ≺ x2 and `2 = x2.

For the index `1 of A, both attributes must be stored within the index as both attributes appear in the lex-

order. We call this index which covers the existence check on a relation the master index. Index `2, by

contrast, does not require storage of x2 as the corresponding Datalog rule never references this attribute.

Although only one of the attributes requires storage, since the index selection strategy creates replica

indexes with different orders, all attributes of the relation are stored by `2 regardless. Any attribute

referenced in the body of an atom must be stored in the index even if it is unused in the spatial primitive

search. For example: in the atom B(y), the attribute y has no constraint yet since it is referenced in

C(y), it still must be stored. We denote the complete set of attributes, utilised by the spatial primitive

search and referenced by other atoms in the rule, the auxiliary set of the atom, i.e. aux(B(y)) = {y}.

Therefore, a partial index could be deployed for `2 instead, storing only the attribute x2 for every tuple.

We note that the utilisation of partial indexes would only come into effect when a relation requires
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multiple indexes since the master index for every relation is always full. The most obvious advantage

of storing replace indexes as partial indexes is the reduction in memory usage as for every tuple in `2 it

would require half the storage as a tuple in a full index.

More interestingly, there is a much greater advantage to using a partial index to store relations. Consider

the tuples t1 = 〈1, 1〉 and t2 = 〈2, 1〉. When employing a regular index, these tuples are distinct, and

both would be stored. However, the partial index for `2 would only store the x2 value, which is 1 for

both tuples. Therefore, to maintain the set property over the partial index, both of these tuples can be

represented by `2 by storing a single sliced tuple, tsliced = 〈1〉. By slicing off unused attributes from

each tuple, the partial index performs a dimensionality reduction on the full index, no longer requiring

the storage of any tuples which only vary on unused dimensions.

The primary benefit we expect if a partial index were to store sliced tuples would be this dimensionality

reduction, reducing the atom frequency of searches covered by partial indexes. To integrate this partial

indexing technique into SOUFFLÉ, we can apply the following algorithm after the index selection is

made. For every atom whose corresponding spatial primitive search is covered by an index `, we com-

pute its auxiliary set aux(Ai), representing all attributes referenced in the atom or used in the search.

The union of the auxiliary sets of all the atoms corresponding to searches in the search chain then rep-

resents the set of all attributes that require storage by the partial index. Therefore, we can construct all

of the necessary partial indexes from these sets, cutting down on both the memory overhead and per-

forming a dimensionality reduction on the set of tuples. The primary challenge in the implementation is

a bijective mapping between the position of attributes in sliced tuples and regular tuples at the interface

boundary of the index. Providing this mapping would then enable a partial index to be used in the same

way as a full index, requiring no changes to consumers of the interface. Overall, despite the engineering

challenges involved, the partial indexing technique can only reduce memory consumption and improve

evaluation performance, so we aim to employ partial indexes in SOUFFLÉ soon.

5.1.4 Dynamic Query Scheduling

The efficient evaluation of logic programs is primarily dependent on two factors: query scheduling and

index selection. In this thesis, we assumed a fixed query schedule for each rule and then computed a

minimal index selection to cover each of the searches within the rules. In practice, the choice of query

schedule can affect performance even more dramatically than the index selection. However, including
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the assumption of a fixed query schedule is reasonable given that experimenting to find a satisfactory

loop schedule is much less time-intensive than finding the right index selection.

Unfortunately, there is still considerable time invested in order to find query schedules that deliver sat-

isfactory performance. The last step towards Datalog being a performance declarative language would

be for Datalog engines to automatically select the best query schedules without the need for user in-

tervention. The primary challenge is that information known only at run-time is needed to determine

an optimal query schedule. For instance, placing smaller sized relations first in the schedule can lead

to fewer iterations of the loop nest, dramatically reducing the evaluation time. Datalog engines such

as SOUFFLÉ operate by first translating the logic program into an imperative one without access to the

program input. As a consequence, selecting an optimal query schedule statically is not possible since

these crucial statistics are not available.

One possible solution would be to execute the program once and gather run-time statistics during eval-

uation and provide these to the Datalog engine for use when selecting the loop schedule. SOUFFLÉ

programs are optimised similarly, first running the profiler on a representative input and then adjusting

the loop schedule in the Datalog program manually. However, using fixed loop schedules introduces a

few problems. Firstly, modern Datalog applications such as static program analysis tools are translated

to imperative programs once and then run on a variety of different inputs. Selecting a representative

input to use when selecting the loop schedule is not always possible given that different schedules may

perform better when evaluating the program with different inputs.

Furthermore, even for the same input, the optimal loop schedule changes throughout the evaluation. For

example, on some iterations of a rule, a relation’s size may be small, but on another, the size is much

larger. Consequently, evaluation time can improve by using different query schedules across different

iterations of the same rule.

For future work, we aim to research into a dynamic query scheduler which can change the order of the

loop nest on the fly. It would keep track of vital run-time statistics such as the sizes of relations and

re-order the loop-nest as required to achieve satisfactory performance. Not only would this free users

from the manual effort of experimenting with different loop schedules, but the technique could offer

dramatically higher performance evaluation, specialising the schedule for the current input.
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APPENDIX A

Spatial Primitive Searches and Orthogonal Range Queries

We now prove the equivalence between spatial primitive searches and their corresponding orthogonal

range queries from Section 3.5.

THEOREM 1. Given a spatial primitive search σl1≤x1≤u1,...,lk≤xk≤uk
over a relation R yielding the

set of satisfying tuples T , and its corresponding orthogonal range query returning points Q we have

T = f−1(Q).

PROOF. We prove this theorem by proving that f−1(Q) ⊆ T and T ⊆ f−1(Q).

⇒

For every tuple t ∈ T we have that l1 ≤ x1 ≤ u1, ..., lk ≤ xk ≤ uk. When an attribute has no lower

bound or upper bound constraint then an artificial lower or upper bound is introduced in the interval

i.e. loweri = inf(Di) and/or upperi = sup(Di). All points in S trivially satisfy these bounds on the

intervals for the corresponding intervals. If a lower bound appears in the spatial primitive search then

loweri = li. We know that t(xi) ≥ li from the spatial primitive search and since f maps the attribute

values to the same values in the corresponding point, f(t)(xi) ≥ li and lies above the lower end of

the interval. Similarly, when an upper bound appears in the spatial primitive search then upperi = xi

and f(t)(xi) ≤ ui and lies within the upper end of the interval. Therefore, for all tuples satisfying the

spatial primitive search T , after being mapped by f to a point in d-dimensional space lie within the

corresponding intervals bi of the box B. Therefore, all mapped points f(T ) lie within the query box i.e.

f(T ) ⊆ Q. Since f is bijective we can apply the inverse f−1 to both sides and find that T ⊆ f−1(Q).

⇐

Consider a point q ∈ Q satisfying the orthogonal range query. Since every point q ∈ Q lies within the

box B, for every dimension i, q(xi) ∈ bi = [loweri, upperi]. When loweri = inf(Di) or upperi =

sup(Di) then by construction there is no corresponding lower/upper bound constraint in the spatial
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primitive search on xi. Now considering the case where loweri = li then t(xi) ≥ li where t = f−1(q)

since the lower bound of the interval bi is li. Likewise, if upperi = ui then t(xi) ≤ ui. Hence, for every

point q ∈ Q that satisfies the orthogonal range query, the corresponding tuple f−1(q) must satisfy the

spatial primitive search i.e. f−1(Q) ⊆ T .

Since T ⊆ f−1(Q) and f−1(Q) ⊆ T then T = f−1(Q). �



APPENDIX B

Attributes with Inequalities Must be at the End of the kth Prefix of `

We prove Lemma 2 from Section 3.5.5

PROOF.

⇒

We prove the claim by showing that the semantics of the simple spatial primitive search always coincide

with the corresponding lex-search. Firstly, simple spatial primitive searches generalise equality primitive

searches so the kth-prefix constraint must be satisfied for simple spatial primitive searches also. Now

xi must appear as the last attribute in the kth-prefix. Consider a lex-order ` = ... ≺ xi ≺ ... where

the attributes occurring in the lex-search may be any from the set AR. Now the kth-prefix must be of

the form: `k = ... ≺ xi ≺ ... using attributes only from the set S. Since xi is the last attribute in

the kth-prefix we can write `k = ... ≺ xi. Note that since xi is the only attribute with an inequality

constraint that for all other attributes in the search predicate xi ∈ SEQ i.e. lj ≤ xj ≤ uj where lj = uj .

Therefore, as a short-hand we write vj = lj = uj for all j 6= i.

When constructing the lower and upper bounds for the lex-search we have:

a = 〈v1, v2, ..., vk−1, l
′
i〉

b = 〈v1, v2, ..., vk−1, u
′
i〉

Next, we consider all of the tuples that satisfy the lex-search σρ(`,a,b)(R) and ensure that the semantics

coincide with the simple spatial primitive search by considering each attribute constraint. We prove by

induction that precisely the set of tuples satisfying all constraints excluding those on xi in the search

satisfy the lex-search.

For a base case we consider the first attribute constraint x1 = v1 in the simple spatial primitive search,

clearly this is satisfied precisely when a tuple {t ∈ R | a v` t v` b} as a(x1) = v1 ≤ t(x1) = v1
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and b(x1) = v1 ≥ t(x1) = v1. By the inductive hypothesis we assume that all constraints in the

search predicate are satisfied up to equality constraint on attribute xn−1. For attribute xj we have that

t(xj) = vj for all j < n. For j = n we also have that a(xn) = vn and b(xn) = vn and therefore, the

only tuples satisfying the lex-search must satisfy t(xj) = vj for all j ≤ n. Therefore, by induction the

semantics of the simple spatial primitive search match those of the search predicates up until xi.

Firstly, if li is not specified in the search predicate then l′i is inf(Di) and xi ≥ inf(Di) for any value

of xi. Similarly, if ui is unspecified then u′i = sup(Di) which is also satisfied by any xi. Now if li

is specified then only tuples satisfying t(xi) ≥ a(xi) = li will satisfy the lex-search. Likewise if ui

is specified then only tuples satisfying t(xi) ≤ b(xi) = ui will satisfy the lex-search. Therefore, by a

case-by-case analysis, any tuples satisfying the lex-search are precisely those satisfying the inequality

predicate on xi. Overall, since we know all of the predicates for a simple spatial primitive search are

satisfied precisely when the tuples satisfy the corresponding lex search we have proven that:

σl1≤x1≤u1,...,lk≤xk≤uk
(R) = σρ(`,a,b)(R)

and ` when xi is at the end of the kth-prefix of `.

⇐

By Lemma 1, we know that if xi is not at the end of the kth-prefix of ` then the pair of search sets cannot

be covered by `. Therefore by transposition, if a simple spatial primitive search is coverable by an index

`, then it must have xi at the end of the kth-prefix of `. �



APPENDIX C

Covering Search Set Pairs with B-Trees

We prove Lemma 3 from Section 3.5.6

PROOF.

⇒

By Lemma 2, an index ` covers (S′
EQ, S

′
INEQ) if S′ is the kth-prefix of ` and if xi ∈ S′

INEQ then xi is

at the end of the kth-prefix. We know that S ⊆ S′ and therefore S is also a kth-prefix. We know that if

xi ∈ S′
INEQ then xi /∈ S.

Therefore, with respect to the kth-prefix of S′, xi can always be placed at the end since xi does not appear

in the kth-prefix of S. Since S ⊆ S′, then S is also a kth-prefix of ` and therefore covers both simple

spatial primitive searches. Thus, there exists an index ` such that (SEQ, SINEQ) and (S′
EQ, S

′
INEQ)

can both be covered by `.

⇐

Assume now that (SEQ, SINEQ) and (S′
EQ, S

′
INEQ) can both be covered by an index ` and it is known

that S ⊆ S′ holds. Next, by Lemma 2, for (SEQ, SINEQ) and (S′
EQ, S

′
INEQ) to both be covered by

the same index `, if xi ∈ S′
INEQ then xi must appear at the end of the corresponding kth-prefix for S′.

Additionally, for any two search pairs to be covered by the same index ` they must both be kth-prefixes

of ` and thus S ⊆ S′. �
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